Skip to main content
Log in

Spatial–temporal interactions in the human brain

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

An Erratum to this article was published on 18 September 2009

Abstract

The review summarises current evidence on the cognitive mechanisms for the integration of spatial and temporal representations and of common brain structures to process the where and when of stimuli. Psychophysical experiments document the presence of spatially localised distortions of sub-second time intervals and suggest that visual events are timed by neural mechanisms that are spatially selective. On the other hand, experiments with supra-second intervals suggest that time could be represented on a mental time-line ordered from left-to-right, similar to what is reported for other ordered quantities, such as numbers. Neuroimaging and neuropsychological findings point towards the posterior parietal cortex as the main site where spatial and temporal information converge and interact with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Assmus A, Marshall JC, Ritzl A, Noth J, Zilles K, Fink GR (2003) Left inferior parietal cortex integrates time and space during collision judgments. Neuroimage 20(Suppl 1):S82–S88

    Article  PubMed  Google Scholar 

  • Assmus A, Marshall JC, Noth J, Zilles K, Fink GR (2005) Difficulty of perceptual spatiotemporal integration modulates the neural activity of left inferior parietal cortex. Neuroscience 132(4):923–927

    Article  PubMed  CAS  Google Scholar 

  • Basso G, Nichelli P, Frassinetti F, di Pellegrino G (1996) Time perception in a neglected space. Neuroreport 7(13):2111–2114

    Article  PubMed  CAS  Google Scholar 

  • Battelli L, Walsh V, Pascual-Leone A, Cavanagh P (2008) The ‘when’ parietal pathway explored by lesion studies. Curr Opin Neurobiol 18(2):120–126 (review)

    Article  PubMed  CAS  Google Scholar 

  • Benussi V (1913) Psychologie der Zeitaufassung. Carl Winter’s Universitatsbuchhandlung, Heidelberg

    Google Scholar 

  • Bill JC, Teft LW (1969) Space–time relations: effects of time on perceived visual extent. J Exp Psychol 81(1):196–199

    Article  PubMed  CAS  Google Scholar 

  • Bueti D, Bahrami B, Walsh V (2008) Sensory and association cortex in time perception. J Cogn Neurosci 20(6):1054–1062

    Article  PubMed  Google Scholar 

  • Burr D, Tozzi A, Morrone MC (2007) Neural mechanisms for timing visual events are spatially selective in real-world coordinates. Nat Neurosci 10(4):423–425

    PubMed  CAS  Google Scholar 

  • Casarotti M, Michielin M, Zorzi M, Umiltà C (2007) Temporal order judgment reveals how number magnitude affects visuospatial attention. Cognition 102:101–117

    Article  PubMed  Google Scholar 

  • Collyer CE (1977) Discrimination of spatial and temporal intervals defined by three light flashes: effects of spacing on temporal judgments. Percept Psychophys 21:357–364

    Google Scholar 

  • Coull JT, Nobre AC (1998) Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci 18(18):7426–7435

    PubMed  CAS  Google Scholar 

  • Coull J, Nobre A (2008) Dissociating explicit timing from temporal expectation with fMRI. Curr Opin Neurobiol 18(2):137–144 (review)

    Article  PubMed  CAS  Google Scholar 

  • Coull JT, Frith CD, Büchel C, Nobre AC (2000) Orienting attention in time: behavioural and neuroanatomical distinction between exogenous and endogenous shifts. Neuropsychologia 38(6):808–819

    Article  PubMed  CAS  Google Scholar 

  • d’Avossa G, Tosetti M, Crespi S, Biagi L, Burr DC, Morrone MC (2007) Spatiotopic selectivity of BOLD responses to visual motion in human area MT. Nat Neurosci 10(2):249–255

    Article  PubMed  Google Scholar 

  • Danckert J, Ferber S, Pun C, Broderick C, Striemer C, Rock S, Stewart D (2007) Neglected time: impaired temporal perception of multisecond intervals in unilateral neglect. J Cogn Neurosci 19(10):1706–1720

    Article  PubMed  Google Scholar 

  • Dehaene S, Bossini S, Giraux P (1993) The mental representation of parity and number magnitude. J Exp Psychol: Gen 122:371–396

    Article  Google Scholar 

  • Di Pellegrino G, Basso G, Frassinetti F (1998) Visual extinction as a spatio-temporal disorder of selective attention. Neuroreport 9(5):835–839

    Article  PubMed  CAS  Google Scholar 

  • Duhamel JR, Colby CL, Goldberg ME (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255(5040):90–92

    Article  PubMed  CAS  Google Scholar 

  • Ferber S, Danckert J (2006) Lost in space—the fate of memory representations for non-neglected stimuli. Neuropsychologia 44:320–325

    Article  PubMed  Google Scholar 

  • Fischer MH, Castel AD, Dodd MD, Pratt J (2003) Perceiving numbers causes spatial shifts of attention. Nat Neurosci 6:555–556

    Article  PubMed  CAS  Google Scholar 

  • Frassinetti F, Magnani B, Oliveri M (2009) Prismatic lenses shift time perception. Psychol Sci (in press)

  • Genovesio A, Tsujimoto S, Wise SP (2006) Neuronal activity related to elapsed time in prefrontal cortex. J Neurophysiol 95(5):3281–3285

    Article  PubMed  Google Scholar 

  • Gibbon J, Malapani C, Dale CL, Gallistel CR (1997) Toward a neurobiology of temporal cognition: advances and challenges. Curr Opinion Neurobiol 7:170–184

    Article  CAS  Google Scholar 

  • Goldman-Rakic PS (1995) Cellular basis of working memory. Neuron 14:477–485

    Article  PubMed  CAS  Google Scholar 

  • Harrington DL, Haaland KY, Knight RT (1998) Cortical networks underlying mechanisms of time perception. J Neurosci 18(3):1085–1095

    PubMed  CAS  Google Scholar 

  • Husain M, Shapiro K, Martin J, Kennard C (1997) Abnormal temporal dynamics of visual attention in spatial neglect patients. Nature 385(6612):154–156

    Article  PubMed  CAS  Google Scholar 

  • Ishihara M, Keller PE, Rossetti Y, Prinz W (2008) Horizontal spatial representations of time: evidence for the STEARC effect. Cortex 44(4):454–461

    Article  PubMed  Google Scholar 

  • Ivry RB, Spencer RM (2004) The neural representation of time. Curr Opin Neurobiol 14(2):225–232

    Article  PubMed  CAS  Google Scholar 

  • Johnston A, Arnold DH, Nishida S (2006) Spatially localized distortions of event time. Curr Biol 16(5):472–479

    Article  PubMed  CAS  Google Scholar 

  • Jones B, Huang YL (1982) Space–time dependencies in psychophysical judgment of extent and duration: algebraic models of the tau and kappa effects. Psychol Bull 91(1):128–141

    Article  Google Scholar 

  • Jones CR, Rosenkranz K, Rothwell JC, Jahanshahi M (2004) The right dorsolateral prefrontal cortex is essential in time reproduction: an investigation with repetitive transcranial magnetic stimulation. Exp Brain Res 158:366–372

    Article  PubMed  Google Scholar 

  • Karmarkar UR, Buonomano DV (2007) Timing in the absence of clocks: encoding time in neural network states. Neuron 53(3):427–438

    Article  PubMed  CAS  Google Scholar 

  • Koch G, Oliveri M, Carlesimo GA, Caltagirone C (2002) Selective deficit of time perception in a patient with right prefrontal cortex lesion. Neurology 59(10):1658–1659

    PubMed  Google Scholar 

  • Koch G, Oliveri M, Torriero S, Caltagirone C (2003) Underestimation of time perception after repetitive transcranial magnetic stimulation. Neurology 60(11):1844–1846

    PubMed  Google Scholar 

  • Koch G, Oliveri M, Brusa L, Stanzione P, Torriero S, Caltagirone C (2004) High-frequency rTMS improves time perception in Parkinson disease. Neurology 63(12):2405–2406

    PubMed  CAS  Google Scholar 

  • Koch G, Brusa L, Oliveri M, Stanzione P, Caltagirone C (2005) Memory for time intervals is impaired in left hemi-Parkinson patients. Neuropsychologia 43(8):1163–1167

    Article  PubMed  Google Scholar 

  • Koch G, Oliveri M, Torriero S, Salerno S, Lo Gerfo E, Caltagirone C (2007) Repetitive TMS of cerebellum interferes with millisecond time processing. Exp Brain Res 179(2):291–299

    Article  PubMed  Google Scholar 

  • Leon MI, Shadlen MN (2003) Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 38:317–327

    Article  PubMed  CAS  Google Scholar 

  • Lewis PA, Miall RC (2003) Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol 13(2):250–255

    Article  PubMed  CAS  Google Scholar 

  • Lewis PA, Miall RC (2006) Remembering the time: a continuous clock. Trends Cogn Sci 10(9):401–406

    Article  PubMed  Google Scholar 

  • Lewis PA, Walsh V (2005) Time perception: components of the brain’s clock. Curr Biol 15(10):R389–R391 (review)

    Article  PubMed  CAS  Google Scholar 

  • Morrone MC, Ross J, Burr D (2005) Saccadic eye movements cause compression of time as well as space. Nat Neurosci 8(7):950–954

    PubMed  CAS  Google Scholar 

  • Nobre AC, Coull JT, Maquet P, Frith CD, Vandenberghe R, Mesulam MM (2004) Orienting attention to locations in perceptual versus mental representations. J Cogn Neurosci 16(3):363–373

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly JX, Mesulam MM, Nobre AC (2008) The cerebellum predicts the timing of perceptual events. J Neurosci 28(9):2252–2260

    Article  PubMed  Google Scholar 

  • Oliveri M, Vicario CM, Salerno S, Koch G, Turriziani P, Mangano R, Chillemi G, Caltagirone C (2008) Perceiving numbers alters time perception. Neurosci Lett 438:308–311

    Article  PubMed  CAS  Google Scholar 

  • Oliveri M, Koch G, Salerno S, Torriero S, Gerfo EL, Caltagirone C (2009) Representation of time intervals in the right posterior parietal cortex: implications for a mental time line. Neuroimage [Epub ahead of print]

  • Park J, Schlag-Rey M, Schlag J (2003) Voluntary action expands perceived duration of its sensory consequence. Exp Brain Res 149(4):527–529

    PubMed  Google Scholar 

  • Passingham D, Sakai K (2004) The prefrontal cortex and working memory: physiology and brain imaging. Curr Opin Neurobiol 14(2):163–168 (review)

    Article  PubMed  Google Scholar 

  • Price-Williams DR (1954) The kappa effect. Nature 173(4399):363–364

    Article  PubMed  CAS  Google Scholar 

  • Rao SM, Mayer AR, Harrington DL (2001) The evolution of brain activation during temporal processing. Nat Neurosci 4(3):317–323

    Article  PubMed  CAS  Google Scholar 

  • Rossetti Y, Rode G, Pisella L, Farne A, Li L, Boisson D, Perenoin MT (1998) Prism adaptation to a rightward optical deviation rehabilitates left hemispatial neglect. Nature 395:166–169

    Article  PubMed  CAS  Google Scholar 

  • Rushworth MF, Johansen-Berg H, Göbel SM, Devlin JT (2003) The left parietal and premotor cortices: motor attention and selection. Neuroimage Suppl 1:S89–S100 (review)

    Article  Google Scholar 

  • Sandor PS, Bachtold D, Henn V, Brugger P (2000) Effects of optokinetically induced rotatory self-motion on spatial perception and representation. Neuropsychiat Neuropsychol Behav Neurol 13(3):188–194

    CAS  Google Scholar 

  • Santiago J, Lupianez J, Perez E, Funes MJ (2007) Time (also) flies from left to right. Psychon Bull Rev 14:512–516

    PubMed  Google Scholar 

  • Sarrazin J-C, Giraudo M-D, Pailhous J, Bootsma RJ (2004) Dynamics of balancing space and time in memory: tau and kappa effects revisited. J Exp Psychol: Human Percept Perform 30(3):411–430

    Article  Google Scholar 

  • Shapiro KL, Arnell KM, Raymond JE (1997) The attentional blink. Trends Cogn Sci 1:291–296

    Article  Google Scholar 

  • Shapiro K, Hillstrom AP, Husain M (2002) Control of visuotemporal attention by inferior parietal and superior temporal cortex. Curr Biol 12(15):1320–1325

    Article  PubMed  CAS  Google Scholar 

  • Snyder JJ, Chatterjee A (2004) Spatial–temporal anisometries following right parietal damage. Neuropsychologia 42(12):1703–1708

    Article  PubMed  Google Scholar 

  • Szpunar KK, Watson JM, McDermott KB (2007) Neural substrates of envisioning the future. Proc Natl Acad Sci USA 104(2):642–647

    Article  PubMed  CAS  Google Scholar 

  • Vallesi A, Binns MA, Shallice T (2008) An effect of spatial–temporal association of response codes: understanding the cognitive representations of time. Cognition 107:501–527

    Article  PubMed  Google Scholar 

  • Vicario CM, Caltagirone C, Oliveri M (2007) Optokinetic stimulation affects temporal estimation in healthy humans. Brain Cogn 64(1):68–73

    Article  PubMed  Google Scholar 

  • Vicario CM, Pecoraro P, Turriziani P, Koch G, Caltagirone C, Oliveri M (2008) Relativistic compression and expansion of experiential time in the left and right space. PLoS ONE 3(3):e1716

    Article  PubMed  Google Scholar 

  • Walsh V (2003) A theory of magnitude: common cortical metrics of time, space and quantity. Trends Cogn Sci 7(11):483–488

    Article  PubMed  Google Scholar 

  • Yarrow K, Haggard P, Heal R, Brown P, Rothwell JCE (2001) Illusory perceptions of space and time preserve cross-saccadic perceptual continuity. Nature 414:302–305

    Article  PubMed  CAS  Google Scholar 

  • Yarrow K, Haggard P, Rothwell JC (2004) Action, arousal and subjective time. Consc Cognit 13:373–390

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Oliveri.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00221-009-2013-0

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveri, M., Koch, G. & Caltagirone, C. Spatial–temporal interactions in the human brain. Exp Brain Res 195, 489–497 (2009). https://doi.org/10.1007/s00221-009-1834-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1834-1

Keywords

Navigation