Skip to main content
Log in

Limitations of feedforward control in multiple-phase steering movements

  • Research Note
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

When attempting to perform bi-phasic steering movements (such as a lane change) in the absence of visual and inertial feedback, drivers produce a systematic heading error in the direction of the lane change (Wallis et al., Curr Biol 12(4):295–299, 2002; J Exp Psychol Hum Percept Perform 33(55):1127–1144, 2007). Theories of steering control which employ exclusively open-loop control mechanisms cannot accommodate this finding. In this article we show that a similar steering error occurs with obstacle avoidance, and offer compelling evidence that it stems from a seemingly general failure of human operators to correctly internalise the dynamics of the steering wheel. With respect to lateral position, the steering wheel is an acceleration control device, but we present data indicating that drivers treat it as a rate control device. Previous findings from Wallis et al. can be explained the same way. Since an open-loop control mechanism will never succeed when the dynamics of the controller are internalised improperly, we go on to conclude that regular, appropriately timed sensory feedback—predominantly from vision—is necessary for regulating heading, even during well-practiced, everyday manoeuvres such as lane changing and obstacle avoidance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anzai Y (1984) Cognitive control of real-time event-driven systems. Cogn Sci 8:221–254

    Article  Google Scholar 

  • Cloete SR, Wallis G (2008) Changing lanes on a curved trajectory: another look at visual feedback. Paper presented at the Asia-Pacific conference on vision, Brisbane, Australia, 18–21 July 2008

  • Desmurget M, Grafton S (2002) Forward modelling allows feedback control for fast reaching movements. Trends Cogn Sci 4(11):423–431

    Article  Google Scholar 

  • Fajen BR, Warren WH (2000) Go with the flow. Trends Cogn Sci 4(10):369–370

    Article  PubMed  Google Scholar 

  • Fajen BR, Warren WH (2003) The behavioral dynamics of steering, obstacle avoidance, and route selection. J Exp Psychol Hum Percept Perform 29(2):343–362

    Article  PubMed  Google Scholar 

  • Fajen BR, Warren WH, Temizer S, Kaelbling L (2003) A dynamical model of steering, obstacle avoidance, and route selection. Int J Comput Vis 54(1/2):13–34

    Article  Google Scholar 

  • Glover S (2002) Visual illusions affect planning but not control. Trends Cogn Sci 6:288–292

    Article  PubMed  Google Scholar 

  • Glover S (2004) Separate visual representations in the planning and control of action. Behav Brain Sci 27:3–78

    PubMed  Google Scholar 

  • Glover SR, Dixon P (2001) Dynamic illusion effects in a reaching task: evidence for separate visual representations in the planning and control of reaching. J Exp Psychol Hum Percept Perform 27:560–572

    Article  PubMed  CAS  Google Scholar 

  • Godthelp J (1985) Precognitive control: open and closed loop steering in a lane change manoeuvre. Ergonomics 28:1419–1438

    Article  PubMed  CAS  Google Scholar 

  • Godthelp H (1986) Vehicle control during curve driving. Hum Factors 28:211–221

    PubMed  CAS  Google Scholar 

  • Hecht H, Bertamini M (2000) Understanding projectile acceleration. J Exp Psychol Hum Percept Perform 26(2):730–746

    Article  PubMed  CAS  Google Scholar 

  • Hildreth EC, Beusmans JMH, Boer ER, Royden CS (2000) From vision to action: experiments and models of steering control during driving. J Exp Psychol Hum Percept Perform 26:1106–1132

    Article  PubMed  CAS  Google Scholar 

  • Kandil FI, Rotter A, Lappe M (2008) Driving is smoother and more stable when using the tangent point. J Vis 9(1):1–11

    Article  Google Scholar 

  • Land MF, Horwood J (1995) Which parts of the road guide steering? Nature 377:339–340

    Article  PubMed  CAS  Google Scholar 

  • Land MF, Lee DN (1994) Where do we look when we steer? Nature 369:742–744

    Article  PubMed  CAS  Google Scholar 

  • Laurent M, Thomson JA (1988) The role of visual information in control of a constrained locomotion task. J Mot Behav 20(1):17–37

    PubMed  CAS  Google Scholar 

  • Macuga KL, Beall AC, Kelly JW, Smith RS, Loomis JM (2007) Changing lanes: inertial cues and explicit path information facilitate steering performance when visual feedback is removed. Exp Brain Res 178:141–150

    Article  PubMed  Google Scholar 

  • McCloskey M, Kohl D (1983) Naive physics—the curvilinear impetus principle and its role in interactions with moving objects. J Exp Psychol Learn Mem Cogn 9(1):146–156

    Article  PubMed  CAS  Google Scholar 

  • Modjtahedzadeh A, Hess R (1993) A model of driver steering control behaviour for use in assessing vehicle handling qualities. J Dyn Syst Meas Control 115:456–464

    Article  Google Scholar 

  • Patla AE, Vickers JN (1997) Where and when do we look as we approach and step over an obstacle in the travel path? NeuroReport 8(17):3661–3665

    Article  PubMed  CAS  Google Scholar 

  • Patla AE, Adkin A, Martin C, Holden R, Prentice S (1996) Characteristics of voluntary visual sampling of the environment for safe locomotion over different terrains. Exp Brain Res 112:513–522

    Article  PubMed  CAS  Google Scholar 

  • Poulton EC (1957) On the stimulus and response in pursuit tracking. J Exp Psychol 53(3):189–194

    Article  PubMed  CAS  Google Scholar 

  • Poulton EC (1967) Tracking a variable rate of movement. J Exp Psychol 73(1):135–144

    Article  PubMed  CAS  Google Scholar 

  • Robertshaw KD, Wilkie RM (2008) Does gaze influence steering around a bend? J Vis 8(4):1–13

    Article  PubMed  Google Scholar 

  • Salvucci DD, Gray R (2004) A two-point visual control model of steering. Perception 33:1233–1248

    Article  PubMed  Google Scholar 

  • Senders JW, Kristofferson AB, Levinson WH, Dietrich CW, Ward JL (1967) The attentional demand of automobile driving. Highw Res Rec 195:15–32

    Google Scholar 

  • Steenhuis RE, Goodale MA (1988) The effects of time and distance on accuracy of target-directed locomotion: does an accurate short-term memory for spatial location exist? J Mot Behav 20(4):399–415

    PubMed  CAS  Google Scholar 

  • Thomson JA (1980) How do we use visual information to control locomotion? Trends Neurosci 3:247–250

    Google Scholar 

  • Thomson JA (1983) Is continuous visual control necessary in visually guided locomotion? J Exp Psychol Hum Percept Perform 9:427–443

    Article  PubMed  CAS  Google Scholar 

  • Tresilian JR (2005) Hitting moving targets: perception and action in the timing of fast interceptions. Percept Psychophys 67:129–149

    PubMed  Google Scholar 

  • Wallis G, Chatziastros A, Bulthoff HH (2002) An unexpected role for visual feedback in vehicle steering control. Curr Biol 12(4):295–299

    Article  PubMed  CAS  Google Scholar 

  • Wallis G, Chatziastros A, Tresilian J, Tomasevic N (2007) The role of visual and non-visual feedback in a vehicle steering task. J Exp Psychol Hum Percept Perform 33(5):1127–1144

    Article  PubMed  Google Scholar 

  • Wann JP, Land MF (2000a) Steering with or without the flow: is the retrieval of heading necessary? Trends Cogn Sci 4(8):319–324

    Article  PubMed  Google Scholar 

  • Wann JP, Land MF (2000b) Heading in the wrong direction: reply to Fajen and Warren. Trends Cogn Sci 5(1):8–9

    Article  Google Scholar 

  • Warren WH, Hannon DJ (1988) Direction of self-motion is perceived from optic flow. Nature 336:162–163

    Article  Google Scholar 

  • Wilkie RM, Wann JP (2002) Driving as night falls: the contribution of retinal flow and visual direction to the control of steering. Curr Biol 12(23):2014–2017

    Article  PubMed  CAS  Google Scholar 

  • Wilkie RM, Wann JP (2003) Controlling steering and judging heading: retinal flow, visual direction and extra-retinal information. J Exp Psychol Hum Percept Perform 29(2):363–378

    Article  PubMed  Google Scholar 

  • Wilkie RM, Wann JP (2005) The role of visual and non-visual information in the control of locomotion. J Exp Psychol Hum Percept Perform 31(5):901–911

    Article  PubMed  Google Scholar 

  • Wilkie RM, Wann JP, Allison RS (2008) Active gaze, visual look-ahead, and locomotor control. J Exp Psychol Hum Percept Perform 34(5):1150–1164

    Article  PubMed  Google Scholar 

  • Woodworth RS (1899) The accuracy of voluntary movement. Psychol Rev Monogr Suppl 3:1–114

    Google Scholar 

Download references

Acknowledgements

This work was supported by an Australian Research Council Grant: DP0663407. We thank Jack Loomis and an anonymous reviewer for their helpful comments on a previous draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R. Cloete.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cloete, S.R., Wallis, G. Limitations of feedforward control in multiple-phase steering movements. Exp Brain Res 195, 481–487 (2009). https://doi.org/10.1007/s00221-009-1813-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1813-6

Keywords

Navigation