Skip to main content
Log in

Dynamic interactions between the cerebral hemispheres

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The cortical areas of the two hemispheres interact via the corpus callosum. This paper reviews recent findings in animals and man, showing that the visual areas of the two hemispheres control each other’s dynamics. The interaction is stimulus-dependent and stimulus-specific. It consists of both excitatory and inhibitory inputs controlling the formation of synchronous neuronal assemblies across and within the hemispheres. The findings are consistent with the geometry of callosal axons and their inferred computational properties. These are the first findings to suggest a direct relationship between the geometry of cortical connections, and the formation of stimulus-driven synchronous neuronal assemblies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Carmeli C, Knyazeva MG, Innocenti GM, De Feo O (2005) Assessment of EEG synchronization based on state–space analysis. Neuroimage 25:339–354

    Article  PubMed  Google Scholar 

  • Carmeli C, Lopez-Aguado L, Schmidt KE, De Feo O, Innocenti GM (2007) A novel interhemispheric interaction: modulation of neuronal cooperativity in the visual areas. PLoS ONE 12:e1287

    Article  Google Scholar 

  • Engel AK, König P, Kreiter AK, Singer W (1991) Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science 252:1177–1179

    Article  CAS  Google Scholar 

  • Geschwind N (1965) Disconnexion syndromes in animals and man. In: Cohen RS, Wartofsky MW (eds) Selected papers of language and the brain. Reidel, Boston, pp 106–236

    Google Scholar 

  • Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, New York, pp 1–335

    Google Scholar 

  • Houzel J-C, Milleret C, Innocenti GM (1994) Morphology of callosal axons interconnecting areas 17 and 18 of the cat. Eur J Neurosci 6:898–917

    Article  PubMed  CAS  Google Scholar 

  • Innocenti GM (1986) General organization of callosal connections in the cerebral cortex. In: Jones EG, Peters A (eds) Cerebral cortex, vol 5. Plenum publishing corporation, New York, pp 291–353

    Google Scholar 

  • Innocenti GM (1995) Exuberant development of connections, and its possible permissive role in cortical evolution. TINS 18:397–402

    PubMed  CAS  Google Scholar 

  • Innocenti GM, Lehmann P, Houzel J-C (1994) Computational structure of visual callosal axons. Eur J Neurosci 6:918–935

    Article  PubMed  CAS  Google Scholar 

  • Jalili M, Lavoie S, Deppen P, Meuli R, Cuenod M, Hasler M, De Feo O, Knyazeva MG (2007) Dysconnection topography in schizophrenia revealed with state-space analysis of EEG. PLoSONE 10:e1059

    Google Scholar 

  • Kennedy H, Meissirel C, Dehay C (1991) Callosal pathways and their compliancy to general rules governing the organization of corticocortical connectivity. In: Dreher B, Robinson S (eds) Vision and visual dysfunction, vol. 3: neuroanatomy of the visual pathways and their development. Macmillan, London, pp 324–359

    Google Scholar 

  • Kiper DC, Knyazeva MG, Tettoni L, Innocenti GM (1999) Visual stimulus-dependent changes in interhemispheric EEG coherence in ferrets. J Neurophysiol 82:3082–3094

    PubMed  CAS  Google Scholar 

  • Knyazeva MG, Innocenti GM (2001) EEG coherence studies in the normal brain and after early-onset cortical pathologies. Brain Res Rev 36:119–128

    Article  PubMed  CAS  Google Scholar 

  • Knyazeva MG, Kiper DC, Vildavsky VJ, Despland PA, Maeder-Ingvar M, Innocenti GM (1999) Visual stimulus-dependent changes in interhemispheric EEG coherence in humans. J Neurophysiol 82:3095–3107

    PubMed  CAS  Google Scholar 

  • Knyazeva MG, Fornari E, Meuli R, Innocenti G, Maeder P (2006) Imaging of a synchronous neuronal assembly in the human visual brain. Neuroimage 29:593–604

    Article  PubMed  Google Scholar 

  • Makarov VA, Schmidt KE, Castellanos NP, Lopez-Aguado L, Innocenti GM (2007) Stimulus-dependent interaction between the visual areas 17 and 18 of the 2 hemispheres of the ferret (Mustela putorius). Cereb Cortex (in press)

  • Mountcastle VB (1978) An organizing principle for cerebral function: the unit module and the distributed system. In: Edelman GM, Mountcastle VB (eds) The mindful brain. MIT Press, Cambridge, pp 7–50

    Google Scholar 

  • Nakamura H, Chaumon M, Klijn F, Innocenti GM (2007) Dynamic properties of the representation of the visual field midline in the visual Areas 17 and 18 of the Ferret (Mustela putorius). Cereb Cortex (in press)

  • Nowak LG, Munk MHJ, Nelson JI, James AC, Bullier J (1995) Structural basis of cortical synchronization. I. Three types of interhemispheric coupling. J Neurophysiol 74:2379–2400

    PubMed  CAS  Google Scholar 

  • Pandya DN, Seltzer B (1986) The topography of commissural fibers. In: Leporé F, Ptito M, Jasper HH (eds) Two hemispheres-one brain. Functions of the corpus callosum. Alan Liss, New York, pp 47–73

    Google Scholar 

  • Pulvermüller F, Mohr B (1996) The concept of transcortical cell assemblies: a key to the understanding of cortical lateralization and interhemispheric interaction. Neurosci Biobehav Rev 20:557–566

    Article  PubMed  Google Scholar 

  • Rochefort NL, Buzás P, Kisvárday ZF, Eysel UT, Milleret C (2007) Layout of transcallosal activity in cat visual cortex revealed by optical imaging. Neuroimage 36:804–821

    Article  PubMed  CAS  Google Scholar 

  • Schmidt KE, Goebel R, Löwel S, Singer W (1997) The perceptual grouping criterion of colinearity is reflected by anisotropies of connections in the primary visual cortex. Eur J Neurosci 9:1083–1089

    Article  PubMed  CAS  Google Scholar 

  • Sperry R (1982) Some effects of disconnecting the cerebral hemispheres. Science 217:1223–1226

    Article  PubMed  CAS  Google Scholar 

  • Tettoni L, Gheorghita-Baechler F, Bressoud R, Welker E, Innocenti GM (1998) Constant and variable aspects of axonal phenotype in cerebral cortex. Cereb Cortex 8:543–552

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio M. Innocenti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Innocenti, G.M. Dynamic interactions between the cerebral hemispheres. Exp Brain Res 192, 417–423 (2009). https://doi.org/10.1007/s00221-008-1484-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1484-8

Keywords

Navigation