Skip to main content
Log in

Audio–vocal system regulation in children with autism spectrum disorders

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Do children with autism spectrum disorders (ASD) respond similarly to perturbations in auditory feedback as typically developing (TD) children? Presentation of pitch-shifted voice auditory feedback to vocalizing participants reveals a close coupling between the processing of auditory feedback and vocal motor control. This paradigm was used to test the hypothesis that abnormalities in the audio–vocal system would negatively impact ASD compensatory responses to perturbed auditory feedback. Voice fundamental frequency (F 0) was measured while children produced an /a/ sound into a microphone. The voice signal was fed back to the subjects in real time through headphones. During production, the feedback was pitch shifted (−100 cents, 200 ms) at random intervals for 80 trials. Averaged voice F 0 responses to pitch-shifted stimuli were calculated and correlated with both mental and language abilities as tested via standardized tests. A subset of children with ASD produced larger responses to perturbed auditory feedback than TD children, while the other children with ASD produced significantly lower response magnitudes. Furthermore, robust relationships between language ability, response magnitude and time of peak magnitude were identified. Because auditory feedback helps to stabilize voice F 0 (a major acoustic cue of prosody) and individuals with ASD have problems with prosody, this study identified potential mechanisms of dysfunction in the audio–vocal system for voice pitch regulation in some children with ASD. Objectively quantifying this deficit may inform both the assessment of a subgroup of ASD children with prosody deficits, as well as remediation strategies that incorporate pitch training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baron-Cohen S, Knickmeyer RC, Belmonte MK (2005) Sex differences in the brain: implications for explaining autism. Science 310:819–823

    Article  PubMed  CAS  Google Scholar 

  • Bauer JJ, Larson CR (2003) Audio–vocal responses to repetitive pitch-shift stimulation during a sustained vocalization: improvements in methodology for the pitch-shifting technique. J Acoust Soc Am 114:1048–1054

    Article  PubMed  Google Scholar 

  • Boddaert N, Belin P, Chabane N, Poline JB, Barthelemy C, Mouren-Simeoni MC, Brunelle F, Samson Y, Zilbovicius M (2003) Perception of complex sounds: abnormal pattern of cortical activation in autism. Am J Psychiatry 160:2057–2060

    Article  PubMed  Google Scholar 

  • Boddaert N, Chabane N, Belin P, Bourgeois M, Royer V, Barthelemy C, Mouren-Simeoni MC, Philippe A, Brunelle F, Samson Y, Zilbovicius M (2004) Perception of complex sounds in autism: abnormal auditory cortical processing in children. Am J Psychiatry 161:2117–2120

    Article  PubMed  Google Scholar 

  • Boersma P, Weenink D (2004) PRAAT: doing phonetics by computer

  • Boucher J (2003) Language development in autism. Int J Pediatr Otorhinolaryngol 67(Suppl 1):S159–163

    Article  PubMed  Google Scholar 

  • Burnett TA, Freedland MB, Larson CR, Hain TC (1998) Voice F0 responses to manipulations in pitch feedback. J Acoust Soc Am 103:3153–3161

    Article  PubMed  CAS  Google Scholar 

  • Callan DE, Kent RD, Guenther FH, Vorperian HK (2000) An auditory-feedback-based neural network model of speech production that is robust to developmental changes in the size and shape of the articulatory system. J Speech Lang Hear Res 43:721–736

    PubMed  CAS  Google Scholar 

  • Campisi P, Low A, Papsin B, Mount R, Cohen-Kerem R, Harrison R (2005) Acoustic analysis of the voice in pediatric cochlear implant recipients: a longitudinal study. Laryngoscope 115:1046–1050

    Article  PubMed  CAS  Google Scholar 

  • Ceponiene R, Lepisto T, Shestakova A, Vanhala R, Alku P, Naatanen R, Yaguchi K (2003) Speech-sound-selective auditory impairment in children with autism: they can perceive but do not attend. Proc Natl Acad Sci USA 100:5567–5572

    Article  PubMed  CAS  Google Scholar 

  • Chen SH, Liu H, Xu Y, Larson CR (2007) Voice F0 responses to pitch-shifted voice feedback during English speech. J Acoust Soc Am 121:1157–1163

    Article  PubMed  Google Scholar 

  • Courchesne E, Pierce K (2005) Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol 15:225–230

    Article  PubMed  CAS  Google Scholar 

  • Dawson G, Osterling J, Meltzoff AN, Kuhl P (2000) Case study of the development of an infant with autism from birth to two years of age. J Appl Dev Psychol 21:299–313

    Article  Google Scholar 

  • Doupe AJ, Kuhl PK (1999) Birdsong and human speech: common themes and mechanisms. Annu Rev Neurosci 22:567–631

    Article  PubMed  CAS  Google Scholar 

  • Ejiri K (1998) Relationship between rhythmic behavior and canonical babbling in infant vocal development. Phonetica 55:226–237

    Article  PubMed  CAS  Google Scholar 

  • Eliades SJ, Wang X (2003) Sensory-motor interaction in the primate auditory cortex during self-initiated vocalizations. J Neurophysiol 89:2194–2207

    Article  PubMed  Google Scholar 

  • Erwin R, Van Lancker D, Guthrie D, Schwafel J, Tanguay P, Buchwald JS (1991) P3 responses to prosodic stimuli in adult autistic subjects. Electroencephalogr Clin Neurophysiol 80:561–571

    Article  PubMed  CAS  Google Scholar 

  • Filipek PA, Accardo PJ, Ashwal S, Baranek GT, Cook EH Jr, Dawson G, Gordon B, Gravel JS, Johnson CP, Kallen RJ, Levy SE, Minshew NJ, Ozonoff S, Prizant BM, Rapin I, Rogers SJ, Stone WL, Teplin SW, Tuchman RF, Volkmar FR (2000) Practice parameter: screening and diagnosis of autism: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Child Neurology Society. Neurology 55:468–479

    PubMed  CAS  Google Scholar 

  • Freitag CM (2007) The genetics of autistic disorders and its clinical relevance: a review of the literature. Mol Psychiatry 12:2–22

    Article  PubMed  CAS  Google Scholar 

  • Gernsbacher MA (2004) Language is more than speech: a case study. J Dev Learn Disord 8:79–96

    Google Scholar 

  • Gervais H, Belin P, Boddaert N, Leboyer M, Coez A, Sfaello I, Barthelemy C, Brunelle F, Samson Y, Zilbovicius M (2004) Abnormal cortical voice processing in autism. Nat Neurosci 7:801–802

    Article  PubMed  CAS  Google Scholar 

  • Gravel JS, Dunn M, Lee WW, Ellis MA (2006) Peripheral audition of children on the autistic spectrum. Ear Hear 27:299–312

    Article  PubMed  Google Scholar 

  • Guenther FH (2006) Cortical interactions underlying the production of speech sounds. J Commun Disord 39:350–365

    Article  PubMed  Google Scholar 

  • Guenther FH, Hampson M, Johnson D (1998) A theoretical investigation of reference frames for the planning of speech movements. Psychol Rev 105:611–633

    Article  PubMed  CAS  Google Scholar 

  • Hain TC, Burnett TA, Kiran S, Larson CR, Singh S, Kenney MK (2000) Instructing subjects to make a voluntary response reveals the presence of two components to the audio–vocal reflex. Exp Brain Res 130:133–141

    Article  PubMed  CAS  Google Scholar 

  • Hamzavi J, Deutsch W, Baumgartner WD, Bigenzahn W, Gstoettner W (2000) Short-term effect of auditory feedback on fundamental frequency after cochlear implantation. Audiology 39:102–105

    Article  PubMed  CAS  Google Scholar 

  • Herbert MR, Kenet T (2007) Brain abnormalities in language disorders and in autism. Pediatr Clin North Am 54:563–583

    Article  PubMed  Google Scholar 

  • Higgins MB, McCleary EA, Schulte L (1999) Altered phonatory physiology with short-term deactivation of children’s cochlear implants. Ear Hear 20:426–438

    Article  PubMed  CAS  Google Scholar 

  • Houde JF, Nagarajan SS, Sekihara K, Merzenich MM (2002) Modulation of the auditory cortex during speech: an MEG study. J Cogn Neurosci 14:1125–1138

    Article  PubMed  Google Scholar 

  • Hubbard K, Trauner DA (2007) Intonation and emotion in autistic spectrum disorders. J Psycholinguist Res 36:159–173

    Article  PubMed  Google Scholar 

  • Iarocci G, McDonald J (2006) Sensory integration and the perceptual experience of persons with autism. J Autism Dev Disord 36:77–90

    Article  PubMed  Google Scholar 

  • Jancke L, Gaab N, Wustenberg T, Scheich H, Heinze HJ (2001) Short-term functional plasticity in the human auditory cortex: an fMRI study. Cogn Brain Res 12:479–485

    Article  CAS  Google Scholar 

  • Jansson-Verkasalo E, Ceponiene R, Kielinen M, Suominen K, Jantti V, Linna S, Moilanen I, Naatanen R (2003) Deficient auditory processing in children with Asperger syndrome, as indexed by event-related potentials. Neurosci Lett 338:197–200

    Article  PubMed  CAS  Google Scholar 

  • Kasai K, Hashimoto O, Kawakubo Y, Yumoto M, Kamio S, Itoh K, Koshida I, Iwanami A, Nakagome K, Fukuda M, Yamasue H, Yamada H, Abe O, Aoki S, Kato N (2005) Delayed automatic detection of change in speech sounds in adults with autism: a magnetoencephalographic study. Clin Neurophysiol 116:1655–1664

    Article  PubMed  Google Scholar 

  • Kellerman GA, Fin J, Gorman JM (2005) Auditory abnormalities in autism: toward functional distinctions among findings. CMS Spectr 10:748–756

    Google Scholar 

  • Khalfa S, Bruneau N, Roge B, Georgieff N, Veuillet E, Adrien JL, Barthelemy C, Collet L (2001) Peripheral auditory asymmetry in infantile autism. Eur J Neurosci 13:628–632

    Article  PubMed  CAS  Google Scholar 

  • Khalfa S, Bruneau N, Roge B, Georgieff N, Veuillet E, Adrien JL, Barthelemy C, Collet L (2004) Increased perception of loudness in autism. Hear Res 198:87–92

    Article  PubMed  Google Scholar 

  • Klin A (1993) Auditory brainstem responses in autism: brainstem dysfunction or peripheral hearing loss? J Autism Dev Disord 23:15–35

    Article  PubMed  CAS  Google Scholar 

  • Korpilahti P, Jansson-Verkasalo E, Mattila ML, Kuusikko S, Suominen K, Rytky S, Pauls DL, Moilanen I (2006) Processing of affective speech prosody is impaired in Asperger syndrome. J Autism Dev Disord 37:1539–1549

    Article  PubMed  Google Scholar 

  • Krishnan A, Xu Y, Gandour JT, Cariani PA (2004) Human frequency-following response: representation of pitch contours in Chinese tones. Hear Res 189:1–12

    Article  PubMed  Google Scholar 

  • Krishnan A, Xu Y, Gandour J, Cariani P (2005) Encoding of pitch in the human brainstem is sensitive to language experience. Cogn Brain Res 25:161–168

    Article  Google Scholar 

  • Kujala T, Lepisto T, Nieminen-von Wendt T, Naatanen P, Naatanen R (2005) Neurophysiological evidence for cortical discrimination impairment of prosody in Asperger syndrome. Neurosci Lett 383:260–265

    Article  PubMed  CAS  Google Scholar 

  • Lane H, Tranel B (1971) The Lombard sign and the role of hearing in speech. J Speech Hear Res 14:677–709

    Google Scholar 

  • Lane HL, Catania AC, Stevens SS (1961) Voice level: autophonic scale, perceived loudness, and effects of sidetone. J Acoust Soc Am 33:160–167

    Article  Google Scholar 

  • Lane H, Wozniak J, Matthies M, Svirsky M, Perkell J, O’Connell M, Manzella J (1997) Changes in sound pressure and fundamental frequency contours following changes in hearing status. J Acoust Soc Am 101:2244–2252

    Article  PubMed  CAS  Google Scholar 

  • Larson CR, Sun J, Hain TC (2007) Effects of simultaneous perturbations of voice pitch and loudness feedback on voice F0 and amplitude control. J Acoust Soc Am 121:2862–2872

    Article  PubMed  Google Scholar 

  • Leder SB, Spitzer JB, Milner P, Flevaris-Phillips C, Kirchner JC, Richardson F (1987) Voice intensity of prospective cochlear implant candidates and normal hearing adult males. Laryngoscope 97:224–227

    Article  PubMed  CAS  Google Scholar 

  • Leonardo A, Konishi M (1999) Decrystallization of adult birdsong by perturbation of auditory feedback. Nature 399:466–470

    Article  PubMed  CAS  Google Scholar 

  • Lepisto T, Kujala T, Vanhala R, Alku P, Huotilainen M, Naatanen R (2005) The discrimination of and orienting to speech and non-speech sounds in children with autism. Brain Res 1066:147–157

    Article  PubMed  CAS  Google Scholar 

  • Lepisto T, Silokallio S, Nieminen-von Wendt T, Alku P, Naatanen R, Kujala T (2006) Auditory perception and attention as reflected by the brain event-related potentials in children with Asperger syndrome. Clin Neurophysiol 117:2161–2171

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Larson CR (2007) Effects of perturbation magnitude and voice F0 level on the pitch-shift reflex. JASA 122:3671–3677

    Article  CAS  Google Scholar 

  • Lord C, Rutter M, Le Couteur A (1994) Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 24:659–685

    Article  PubMed  CAS  Google Scholar 

  • Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, Pickles A, Rutter M (2000) The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 30:205–223

    Article  PubMed  CAS  Google Scholar 

  • Magne C, Schon D, Besson M (2006) Musician children detect pitch violations in both music and language better than nonmusician children: behavioral and electrophysiological approaches. J Cogn Neurosci 18:199–211

    Article  PubMed  Google Scholar 

  • Margoliash D (2002) Evaluating theories of bird song learning: implications for future directions. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 188:851–866

    Article  PubMed  CAS  Google Scholar 

  • Marler P, Sherman V (1983) Song structure without auditory feedback: emendations of the auditory template hypothesis. J Neurosci 3:517–531

    PubMed  CAS  Google Scholar 

  • Maziade M, Merette C, Cayer M, Roy MA, Szatmari P, Cote R, Thivierge J (2000) Prolongation of brainstem auditory-evoked responses in autistic probands and their unaffected relatives. Arch Gen Psychiatry 57:1077–1083

    Article  PubMed  CAS  Google Scholar 

  • McCann J, Peppe S (2003) Prosody in autism spectrum disorders: a critical review. Int J Lang Commun Disord 38:325–350

    Article  PubMed  Google Scholar 

  • McCann J, Peppe S, Gibbon FE, O’Hare A, Rutherford M (2007) Prosody and its relationship to language in school-aged children with high-functioning autism. Int J Lang Commun Disord 42:682–702

    Article  PubMed  Google Scholar 

  • McClelland RJ, Eyre DG, Watson D, Calvert GJ, Sherrard E (1992) Central conduction time in childhood autism. Br J Psychiatry 160:659–663

    Article  PubMed  CAS  Google Scholar 

  • Miller CA (2006) Developmental relationships between language and theory of mind. Am J Speech Lang Pathol 15:142–154

    Article  PubMed  Google Scholar 

  • Monini S, Banci G, Barbara M, Argiro MT, Filipo R (1997) Clarion cochlear implant: short-term effects on voice parameters. Am J Otol 18:719–725

    PubMed  CAS  Google Scholar 

  • Musacchia G, Sams M, Skoe E, Kraus N (2007) Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proc Natl Acad Sci USA 104:15894–15898

    Article  PubMed  CAS  Google Scholar 

  • Natke U, Donath TM, Kalveram KT (2003) Control of voice fundamental frequency in speaking versus singing. J Acoust Soc Am 113:1587–1593

    Article  PubMed  Google Scholar 

  • O’Neill M, Jones RS (1997) Sensory-perceptual abnormalities in autism: a case for more research? J Autism Dev Disord 27:283–293

    Article  PubMed  CAS  Google Scholar 

  • Paul R, Augustyn A, Klin A, Volkmar FR (2005a) Perception and production of prosody by speakers with autism spectrum disorders. J Autism Dev Disord 35:205–220

    Article  PubMed  Google Scholar 

  • Paul R, Shriberg LD, McSweeny J, Cicchetti D, Klin A, Volkmar F (2005b) Brief report: relations between prosodic performance and communication and socialization ratings in high functioning speakers with autism spectrum disorders. J Autism Dev Disord 35:861–869

    Article  PubMed  Google Scholar 

  • Perkell J, Lane H, Svirsky M, Webster J (1992) Speech of cochlear implant patients: a longitudinal study of vowel production. J Acoust Soc Am 91:2961–2978

    Article  PubMed  CAS  Google Scholar 

  • Prather JF, Peters S, Nowicki S, Mooney R (2008) Precise auditory-vocal mirroring in neurons for learned vocal communication. Nature 451:305–310

    Article  PubMed  CAS  Google Scholar 

  • Premack D, Woodruff G (1978) Does the chimpanzee have a theory of mind? Behav Brain Sci 4:515–526

    Article  Google Scholar 

  • Rapin I, Dunn M (2003) Update on the language disorders of individuals on the autistic spectrum. Brain Dev 25:166–172

    Article  PubMed  Google Scholar 

  • Rosenhall U, Nordin V, Brantberg K, Gillberg C (2003) Autism and auditory brain stem responses. Ear Hear 24:206–214

    Article  PubMed  Google Scholar 

  • Russo N, Skoe E, Trommer B, Nicol T, Zecker S, Bradlow A, Kraus N (2008) Deficient brainstem encoding of pitch in children with autism spectrum disorders. Clin Neurophysiol (in press)

  • Sankoh AJ, Huque MF, Dubey SD (1997) Some comments on frequently used multiple endpoint adjustment methods in clinical trials. Stat Med 16:2529–2542

    Article  PubMed  CAS  Google Scholar 

  • Semel E, Wiig EH, Secord WA (2003) Clinical evaluation of language fundamentals, 4th edn. In. Harcourt assessment, Inc., San Antonio, TX

  • Shriberg LD, Paul R, McSweeny JL, Klin AM, Cohen DJ, Volkmar FR (2001) Speech and prosody characteristics of adolescents and adults with high-functioning autism and Asperger syndrome. J Speech Lang Hear Res 44:1097–1115

    Article  PubMed  CAS  Google Scholar 

  • Siegal M, Blades M (2003) Language and auditory processing in autism. Trends Cogn Sci 7:378–380

    Article  PubMed  Google Scholar 

  • Svirsky MA, Lane H, Perkell JS, Wozniak J (1992) Effects of short-term auditory deprivation on speech production in adult cochlear implant users. J Acoust Soc Am 92:1284–1300

    Article  PubMed  CAS  Google Scholar 

  • Tabachnick B, Fidell L (2007) Principal components and factor analysis. In: Hartman S (ed) Using multivariate statistics. Pearson Education, Boston, pp 607–675

    Google Scholar 

  • Tharpe AM, Bess FH, Sladen DP, Schissel H, Couch S, Schery T (2006) Auditory characteristics of children with autism. Ear Hear 27:430–441

    Article  PubMed  Google Scholar 

  • Titze IR (1994) Fluctuations and perturbations in vocal output. In: Principles of voice production. Prentice Hall, Englewood Cliffs, pp 279–306

  • Tourville JA, Reilly KJ, Guenther FH (2007) Neural mechanisms underlying auditory feedback control of speech. NeuroImage 39:1429–1443

    Article  PubMed  Google Scholar 

  • Volman SF, Khanna H (1995) Convergence of untutored song in group-reared zebra finches (Taeniopygia guttata). J Comp Psychol 109:211–221

    Article  PubMed  CAS  Google Scholar 

  • Wang A, Dapretto M, Hariri A, Sigman M, Bookheimer S (2001) Processing affective and linguistic prosody in autism: an fMRI study. NeuroImage 13:621

    Article  Google Scholar 

  • Woerner C, Overstreet K (eds) (1999) Wechsler abbreviated scale of intelligence (WASI). The Psychological Corporation, San Antonio

    Google Scholar 

  • Wong P, Skoe E, Russo N, Dees T, Kraus N (2007) Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nat Neurosci 10:420

    PubMed  CAS  Google Scholar 

  • Xu Y, Krishnan A, Gandour JT (2006) Specificity of experience-dependent pitch representation in the brainstem. Neuroreport 17:1601–1605

    Article  PubMed  Google Scholar 

  • Zatorre RJ, Chen JL, Penhune VB (2007) When the brain plays music: auditory-motor interactions in music perception and production. Nat Rev Neurosci 8:547–558

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the children and their families who participated in this research. We would also like to thank Hanjun Liu, Steven Zecker, and Trent Nicol for their technical and statistical support. This work was supported by NIH R01 DC01510 and DC006243-02. We greatly appreciate the helpful comments from the anonymous reviewers. The authors declare that they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Russo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russo, N., Larson, C. & Kraus, N. Audio–vocal system regulation in children with autism spectrum disorders. Exp Brain Res 188, 111–124 (2008). https://doi.org/10.1007/s00221-008-1348-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1348-2

Keywords

Navigation