Skip to main content
Log in

Goal-directed reaching: movement strategies influence the weighting of allocentric and egocentric visual cues

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The location of an object in peripersonal space can be represented with respect to our body (i.e., egocentric frame of reference) or relative to contextual features and other objects (i.e., allocentric frame of reference). In the current study, we sought to determine whether the frame, or frames, of visual reference supporting motor output is influenced by reach trajectories structured to maximize visual feedback utilization (i.e., controlled online) or structured largely in advance of movement onset via central planning mechanisms (i.e., controlled offline). Reaches were directed to a target embedded in a pictorial illusion (the induced Roelofs effect: IRE) and advanced knowledge of visual feedback was manipulated to influence the nature of reaching control as reported by Zelaznik et al. (J Mot Behav 15:217–236, 1983). When vision could not be predicted in advance of movement onset, trajectories showed primary evidence of an offline mode of control (even when vision was provided) and endpoints demonstrated amplified sensitivity to the illusory (i.e., allocentric) features of the IRE. In contrast, reaches performed with reliable visual feedback evidenced a primarily online mode of control and showed increased visuomotor resistance to the IRE. These findings suggest that the manner a reaching response is structured differentially influences the weighting of allocentric and egocentric visual information. More specifically, when visual feedback is unavailable or unpredictable, the weighting of allocentric visual information for the advanced planning of a reach trajectory is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. We elected to use the induced Roelofs effect because the illusory features of this stimulus are thought constructed by later visual processing systems (i.e., the ventral visual pathway; see Milner and Dyde 2003 for a discussion of this issue). Moreover, our IRE configuration was oriented in the anteroposterior direction (see Fig. 1) and thus differs from the mediolateral orientation used in most previous work (e.g., Bridgeman et al. 1997, 2000, Dassonville et al. 2004). Importantly, however, the IRE orientation used here has been shown to robustly influence reaching endpoints (Coello et al. 2003; Neely et al. 2007; see Neely 2005 for discussion of IRE orientations and visuomotor susceptibility to allocentric visual cues).

  2. The fact that R 2 values at 25% of movement time did not differentiate between the feedback schedule and visual condition combinations is congruent with earlier work arguing that at this time point the spatiotemporal features of an initial movement impulse do not have sufficient time to unfold to predict ultimate movement endpoints (see Heath et al. 2004b).

  3. Of course, the hypothesis proposed here is specific to situations in which reaching/grasping responses are directed to a target within a structured visual background and not restrictive experimental contexts wherein allocentric visual cues are not available to the performer; e.g., when a performer reaches to an isolated target (i.e., point of light) presented in an otherwise neutral or empty visual background.

  4. Bridgeman et al’s (1997) original IRE experiment is frequently cited as providing direct evidence that the IRE does not influence visuomotor control. Careful examination of that experiment, however (see Experiment 1), shows that “5 subjects showed a highly significant Roelofs effect [F(2, 4) > 18, P < 0.01], whereas the other 5 showed no sign of an effect [F(2, 4) ≤ 3.16, P > 0.18]” (p. 460). Importantly, that finding combined with a more recent work (Neely et al. 2007) highlights the existence of a controversy surrounding the extent to which the IRE represents an exemplar illusion supporting the view that egocentric visual cues restrictively mediate visually derived reaches.

References

  • Adamovich SV, Berkinblit MB, Fookson O, Poizner H (1999) Pointing in 3D space to remembered targets. II. Effects of movement speed toward kinesthetically defined targets. Exp Brain Res 125:200–210

    Article  PubMed  CAS  Google Scholar 

  • Beggs WD, Howarth CI (1970) Movement control in a repetitive motor task. Nature 225:752–753

    Article  PubMed  CAS  Google Scholar 

  • Binsted G, Brownell K, Vorontsova Z, Heath M, Saucier D (2007) Visuomotor system uses target information unavailable to conscious awareness. Proc Natl Acad Sci USA 104:12669–12672

    Article  PubMed  CAS  Google Scholar 

  • Binsted G, Heath M (2004) Can the motor system use a stored representation to control movement? Behav Brain Sci 27:25–27

    Article  Google Scholar 

  • Bridgeman B, Gemmer A, Forsman T, Huemer V (2000) Processing spatial information in the sensorimotor branch of the visual system. Vision Res 40:3539–3352

    Article  PubMed  CAS  Google Scholar 

  • Bridgeman B, Peery S, Anand S (1997) Interaction of cognitive and sensorimotor maps of visual space. Percept Psychophys 59:456–469

    PubMed  CAS  Google Scholar 

  • Carlton LG (1981) Processing visual feedback information for movement control. J Exp Psychol Hum Percept Perform 7:1019–1030

    Article  PubMed  CAS  Google Scholar 

  • Coello Y, Grealy MA (1997) Effect of size and frame of visual field on the accuracy of an aiming movement. Perception 26:287–300

    Article  PubMed  CAS  Google Scholar 

  • Coello Y, Richaud S, Magne P, Rossetti Y (2003) Vision for spatial perception and vision for action: a dissociation between the left–right and near–far dimensions. Neuropsychologia 41:622–633

    Article  PubMed  CAS  Google Scholar 

  • Conti P, Beaubaton D (1980) Role of structured visual field and visual reafference in accuracy of pointing movements. Percept Mot Skills 50:239–244

    PubMed  CAS  Google Scholar 

  • Culham JC, Danckert SL, DeSouza JF, Gati JS, Menon RS, Goodale MA (2003) Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Exp Brain Res 153:180–189

    Article  PubMed  Google Scholar 

  • Daprati E, Gentilucci M (1997) Grasping an illusion. Neuropsychologia 35:1577–1582

    Article  PubMed  CAS  Google Scholar 

  • Dassonvile P, Bridgeman B, Bala JK, Thiem P, Sampanes A (2004) The induced Roelofs effect: two visual systems or the shift of a single reference frame? Vision Res 44:603–611

    Article  Google Scholar 

  • Diedrichsen J, Werner S, Schmidt T, Trommershäuser J (2004) Immediate spatial distortions of pointing movements induced by visual landmarks. Percept Psychophys 66:89–103

    PubMed  Google Scholar 

  • Elliott D (1988) The influence of visual target and limb information on manual aiming. Can J Psychol 42:57–68

    PubMed  CAS  Google Scholar 

  • Elliott D, Allard F (1985) The utilization of visual feedback information during rapid pointing movements. Q J Exp Psychol 37:407–425

    CAS  Google Scholar 

  • Elliott D, Binsted G, Heath M (1999a) The control of goal-directed limb movements: correcting errors in the trajectory. Hum Mov Sci 18:121–136

    Article  Google Scholar 

  • Elliott D, Heath M, Binsted G, Ricker KL, Roy EA, Chua R (1999b) Goal-directed aiming: correcting a force-specification error with the right and left hands. J Mot Behav 31:309–324

    PubMed  Google Scholar 

  • Elliott D, Helsen WF, Chua R (2001) A century later: Woodworth’s (1899) two-component model of goal-directed aiming. Psychol Bull 127:342–57

    Article  PubMed  CAS  Google Scholar 

  • Elliott D, Lee TD (1995) The role of target information on manual-aiming bias. Psychol Res 58:2–9

    Google Scholar 

  • Elliott D, Madalena J (1987) The influence of premovement visual information on manual aiming. Q J Exp Psychol 39A:541–559

    Google Scholar 

  • Gentilucci M, Chieffi S, Daprati E, Saetti MC, Toni I (1996) Visual illusion and action. Neuropsychologia 34:369–376

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook CM, Dhillon VP, Keetch KM, Lyons J, Amazeen E, Weeks DJ, Elliott D (2005) Perception-action and the Muller-Lyer illusion: amplitude or endpoint bias? Exp Brain Res 160:71–78

    Article  PubMed  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    Article  PubMed  CAS  Google Scholar 

  • Goodale MA, Westwood DA (2004) An evolving view of duplex vision: separate but interacting cortical pathways for perception and action. Curr Opin Neurobiol 14:203–211

    Article  PubMed  CAS  Google Scholar 

  • Goodale MA, Westwood DA, Milner AD (2004) Two distinct modes of control for object-directed action. Prog Brain Res 144:131–144

    PubMed  Google Scholar 

  • Heath M (2005) Role of limb and target vision in the online control of memory-guided reaches. Motor Control 9:281–311

    PubMed  Google Scholar 

  • Heath M, Neely K, Binsted G (2007) Allocentric visual cues influence online limb adjustments. Motor Control 11:54–70

    PubMed  Google Scholar 

  • Heath M, Rival C (2005) Role of the visuomotor system in on-line attenuation of a premovement illusory bias in grip aperture. Brain Cogn 57:111–114

    Article  PubMed  Google Scholar 

  • Heath M, Rival C, Binsted G (2004a) Can the motor system resolve a premovement bias in grip aperture? Online analysis of grasping the Müller-Lyer illusion. Exp Brain Res 158:378–384

    Article  PubMed  Google Scholar 

  • Heath M, Rival C, Neely K (2006a) Visual feedback schedules influence visuomotor resistance to the Müller-Lyer figures. Exp Brain Res 168:348–56

    Article  PubMed  Google Scholar 

  • Heath M, Rival C, Neely K, Krigolson O (2006b) Müller-Lyer illusions influence the online reeorganziation of visually guided grasping movements. Exp Brain Res 169:473–481

    Article  PubMed  Google Scholar 

  • Heath M, Rival C, Westwood DA, Neely K (2005) Time course analysis of closed- and open-loop grasping of the Müller-Lyer illusion. J Mot Behav 37:179–185

    Article  PubMed  CAS  Google Scholar 

  • Heath M, Westwood DA (2003) Can a visual representation support the online control of memory-dependent reaching? Evidence from a variable spatial mapping paradigm. Motor Control 7:346–361

    PubMed  Google Scholar 

  • Heath M, Westwood DA, Binsted G (2004b) The control of memory-guided reaching movements in peripersonal space. Motor Control 8:76–106

    PubMed  Google Scholar 

  • Henry FM (1986) Development of the motor memory trace and control program. J Mot Behav 18:77–100

    PubMed  CAS  Google Scholar 

  • Henry FM, Rogers DE (1960) Increased response latency for complication movements and a “memory drum” theory of neuromotor reaction. Res Q Exerc Sport 31:448–458

    Google Scholar 

  • Held R, Gottlieb N (1958) Technique for studying adaptation to disarranged hand–eye coordination. Percept Mot Skills 8:83–86

    Article  Google Scholar 

  • Hu Y, Goodale MA (2000) Grasping after a delay shifts size-scaling from absolute to relative metrics. J Cogn Neurosci 12:856–868

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Eagleson R, Goodale MA (1999) The effects of delay on the kinematics of grasping. Exp Brain Res 126:109–116

    Article  PubMed  CAS  Google Scholar 

  • Jakobson LS, Goodale MA (1991) Factors affecting higher-order movement planning: a kinematic analysis of human prehension. Exp Brain Res 86:199–208

    Article  PubMed  CAS  Google Scholar 

  • James TW, Culham J, Humphrey GK, Milner AD, Goodale MA (2003) Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. Brain 126:2463–2475

    Article  PubMed  Google Scholar 

  • Khan MA, Elliott D, Coull J, Chua R, Lyons J (2002) Optimal control strategies under different feedback schedules: kinematic evidence. J Mot Behav 32:45–57

    Google Scholar 

  • Keetch KM, Glazebrook CM, Lyons J, Lam MY, Weeks DJ, Elliott D (2006) The effect of response uncertainty on illusory biases of perception and action. Neurosci Lett 406:117–121

    Article  PubMed  CAS  Google Scholar 

  • Keele SW (1968) Movement control in skilled motor performance. Psychol Bull 70:387–403

    Article  Google Scholar 

  • Klapp ST (1975) Feedback versus motor programming in the control of aimed movements. J Exp Psychol Hum Percept Perform 104:161–169

    PubMed  CAS  Google Scholar 

  • Krigolson O, Clark N, Heath M, Binsted G (2007) The proximity of visual landmarks impacts reaching performance. Spat Vis 20:317–336

    Article  PubMed  Google Scholar 

  • Krigolson O, Heath M (2004) Background visual cues and memory-guided reaching. Hum Mov Sci 23:861–877

    Article  PubMed  Google Scholar 

  • Krigolson O, Heath M (2006) A lower visual field advantage for endpoint stability but no advantage for online movement precision. Exp Brain Res 170:127–135

    Article  PubMed  Google Scholar 

  • McIntosh RD, McClements KI, Schindler I, Cassidy TP, Birchall D, Milner AD (2004) Avoidance of obstacles in the absence of visual awareness. Proc Biol Sci 7:15–20

    Article  Google Scholar 

  • McIntyre J, Stratta F, Lacquaniti F (1997) Viewer-centered frame of reference for pointing to memorized targets in three-dimensional space. J Neurophysiol 78:1601–1618

    PubMed  CAS  Google Scholar 

  • Mendoza JE, Elliott D, Meegan DV, Lyons JL, Welsh TN (2006) The effect of the Muller-Lyer illusion on the planning and control of manual aiming movements. J Exp Psychol Hum Percept Perform 32:413–422

    Article  PubMed  Google Scholar 

  • Mendoza J, Hansen S, Glazebrook CM, Keetch KM, Elliott D (2005) Visual illusions affect both movement planning and on-line control: a multiple cue position on bias and goal-directed action. Hum Mov Sci 24:760–773

    Article  PubMed  Google Scholar 

  • Merigan WH, Maunsell JH (1993) How parallel are the primate visual pathways? Annu Rev Neurosci 16:369–402

    Article  PubMed  CAS  Google Scholar 

  • Messier J, Kalaska JF (1999) Comparison of variability of initial kinematics and endpoints of reaching movements. Exp Brain Res 125:139–152

    Article  PubMed  CAS  Google Scholar 

  • Meyer DA, Abrams RA, Kornblum S, Wright CE, Smith JEK (1988) Optimality in human motor performance: ideal control of rapid aimed movements. Psychol Rev 95:340–370

    Article  PubMed  CAS  Google Scholar 

  • Milner AD, Goodale MA (1995) The visual brain in action. Oxford University Press, Oxford

    Google Scholar 

  • Milner D, Dyde R (2003) Why do some perceptual illusions affect visually guided action, when others don’t? Trends Cogn Sci 7:10–11

    Article  PubMed  Google Scholar 

  • Neely KA (2005) The induced Roelofs effect: evidence for an interaction between allocentric and egocentric visual information. Unpublished master’s thesis, Indiana University, Bloomington

  • Neely KA, Binsted G, Heath M (2007) Allocentric and egocentric visual cues influence the specification of movement distance and direction. J Mot Behav (in press)

  • Obhi SS, Goodale MA (2005) The effects of landmarks on the performance of delayed and real-time pointing movements. Exp Brain Res 167:335–344

    Article  PubMed  Google Scholar 

  • Pisella L, Grea H, Tilikete C, Vighetto A, Desmurget M, Rode G, Boisson D, Rossetti Y (2000) An ‘automatic pilot’ for the hand in human posterior parietal cortex: toward reinterpreting optic ataxia. Nat Neurosci 3:729–736

    Article  PubMed  CAS  Google Scholar 

  • Plamondon R (1995) A kinematic theory of rapid human movements. Part II. Movement time and control. Biol Cybern 72:309–720

    Article  PubMed  CAS  Google Scholar 

  • Proteau L, Marteniuk RG, Levesque L (1992) A sensorimotor basis for motor learning: evidence indicating specificity of practice. Q J Exp Psychol 44A:557–575

    Google Scholar 

  • Redon C, Hay L (2005) Role of visual context and oculomotor conditions in pointing accuracy. Neuroreport 16:2065–2067

    Article  PubMed  Google Scholar 

  • Schluter ND, Rushworth MF, Mills KR, Passingham RE (1999) Signal-, set-, and movement-related activity in the human premotor cortex. Neuropsychologia 37:233–243

    Article  PubMed  CAS  Google Scholar 

  • Schmidt RA, Zelaznik H, Hawkins B, Frank JS, Quinn JT (1979) Motor-output variability: a theory for the accuracy of rapid motor acts. Psychol Rev 47:415–451

    Article  PubMed  CAS  Google Scholar 

  • Schindler I, Rice NJ, McIntosh RD, Rossetti Y, Vighetto A, Milner AD (2004) Automatic avoidance of obstacles is a dorsal stream function: evidence from optic ataxia. Nat Neurosci 7:779–784

    Article  PubMed  CAS  Google Scholar 

  • Smeets JBJ, Brenner E, de Grave DDJ, Cuijpers RH (2002) Illusions in action: consequences of inconsistent processing of spatial attributes. Exp Brain Res 147:135–144

    Article  PubMed  Google Scholar 

  • Smyrnis N, Taira M, Ashe J, Georgopoulos AP (1992) Motor cortical activity in a memorized delay task. Exp Brain Res 92:139–151

    Article  PubMed  CAS  Google Scholar 

  • Ungerleider LG, Courtney SM, Haxby JV (1998) A neural system for human visual working memory. Proc Natl Acad Sci USA 95:883–90

    Article  PubMed  CAS  Google Scholar 

  • Velay JL, Beaubaton D (1986) Influence of visual context on pointing movement accuracy. Cahiers de Psychologie Cognitive 6:447–456

    Google Scholar 

  • Westwood DA, Heath M, Roy EA (2000) The effect of a pictorial illusion on closed-loop and open-loop prehension. Exp Brain Res 134:456–463

    Article  PubMed  CAS  Google Scholar 

  • Westwood DA, Heath M, Roy EA (2001) The accuracy of reaching movements in brief delay conditions. Can J Exp Psychol 55:304–10

    PubMed  CAS  Google Scholar 

  • Westwood DA, Heath M, Roy EA (2003) No evidence for accurate visuomotor memory: systematic and variable error in memory-guided reaching. J Mot Behav 35:127–133

    Article  PubMed  Google Scholar 

  • Westwood DA, Goodale MA (2003) Perceptual illusion and the real-time control of action. Spat Vis 16:243–254

    Article  PubMed  Google Scholar 

  • Whitney D, Westwood DA, Goodale MA (2003) The influence of visual motion on fast reaching movements to a stationary object. Nature 423:869–873

    Article  PubMed  CAS  Google Scholar 

  • Woodworth RS (1899) The accuracy of voluntary movement. Psychol Rev 3:1–114

    Google Scholar 

  • Zelaznik HZ, Hawkins B, Kisselburgh L (1983) Rapid visual feedback processing in single-aiming movements. J Mot Behav 15:217–236

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Natural Sciences and Engineering Research Council of Canada Discovery Grants (MH and GB) and a University of Western Ontario Major Academic Development Fund Award (MH) supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Heath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neely, K.A., Tessmer, A., Binsted, G. et al. Goal-directed reaching: movement strategies influence the weighting of allocentric and egocentric visual cues. Exp Brain Res 186, 375–384 (2008). https://doi.org/10.1007/s00221-007-1238-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-1238-z

Keywords

Navigation