Skip to main content
Log in

Properties of attentional selection during the preparation of sequential saccades

  • Original Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We examined the allocation of attention during the preparation of sequences of saccades in a dual task paradigm. As a primary task, participants performed a sequence of two or three saccades to targets arranged on a circular array. The secondary task was a two-alternative discrimination in which a critical discrimination stimulus (digital “E” or “3”) was presented among distractors either at one of the saccade goals or at any other position. The findings show that discrimination performance is enhanced at all the saccade target locations of the planned sequence, while it is close to chance level at the positions that are not relevant for the saccade sequence. An analysis of the discrimination performance at the intermediate locations indicates that saccade target selection involves spatially distinct, non-contiguous foci of attention. Further, our findings demonstrate that the movement-relevant locations are selected in parallel rather than serially in time. We conclude that during the preparation of a saccade sequence––well before the actual execution of the eye movement––attention is allocated in parallel to each of the individual movement targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen RA, Buneo CA (2002) Intentional maps in posterior parietal cortex. Ann Rev Neurosci 25:189–220

    Article  PubMed  CAS  Google Scholar 

  • Andersen RA, Snyder LH, Bradley DC, Xing J (1997) Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Ann Rev Neurosci 20:303–330

    Article  PubMed  CAS  Google Scholar 

  • Allport DA (1987) Selection for action: some behavioral and neurophysiological considerations of attention and action. In: Heuer H, Sanders AF (eds) Perspectives on perception and action. Lawrence Erlbaum Associates, Hillsdale, pp. 395–419

    Google Scholar 

  • Awh E, Armstrong KM, Moore T (2006) Visual and oculomotor selection: links, causes and implications for spatial attention. Trends Cogn Sci 10(3):124

    Article  PubMed  Google Scholar 

  • Baldauf D, Wolf M, Deubel H (2006) Deployment of visual attention before sequences of goal-directed hand movements. Vision Res 46:4355–4374

    Article  PubMed  Google Scholar 

  • Batista AP, Andersen RA (2001) The parietal reach region codes the next planned movement in a sequential reach task. J Neurophysiol 85:539–544

    PubMed  CAS  Google Scholar 

  • Bekkering H, Pratt J, Abrams RA (1996) The gap effect for eye and hand movements. Percept Psychophys 58:628–635

    PubMed  CAS  Google Scholar 

  • Bonfiglioli C, Castiello U (1998) Dissociation of covert and overt spatial attention during prehension movements: selective interference effects. Percept Psychophys 60(8):1426–1440

    PubMed  CAS  Google Scholar 

  • Bouma H (1970) Interaction effects in parafoveal letter recognition. Nature 226:177–178

    Article  PubMed  CAS  Google Scholar 

  • Bouma H (1973) Visual interference in the parafoveal recognition of initial and final letters of words. Vision Res 13:767–782

    Article  PubMed  CAS  Google Scholar 

  • Carrasco M, Penpeci-Talgar C, Eckstein M (2000) Spatial covert attention increases contrast sensitivity across the CSF: support for signal enhancement. Vision Res 40:1203–1215

    Article  PubMed  CAS  Google Scholar 

  • Castiello U (1996) Grasping a fruit: selection for action. J Exp Psychol Hum Percept Perform 22:582–603

    Article  PubMed  CAS  Google Scholar 

  • Cavanaugh J, Wurtz RH (2004) Subcortical modulation of attention counters change blindness. J Neurosci 24(50):11236–11243

    Article  PubMed  CAS  Google Scholar 

  • Chelazzi L, Corbetta M (2000) Cortical mechanisms of visuospatial attention in the primate brain. In: Gazzaniga MS (ed) The new cognitive neuroscience. MIT, Cambridge pp. 667–686

    Google Scholar 

  • Colby CL (1998) Action-oriented spatial reference frames in cortex. Neuron 20:15–24

    Article  PubMed  CAS  Google Scholar 

  • Colby CL, Goldberg ME (1999) Space and attention in parietal cortex. Ann Rev Neurosci 22:319–349

    Article  PubMed  CAS  Google Scholar 

  • Corbetta M, Miezin F, Shulman G, Peterson S (1991) Selective and divided attention during visual discriminations of shape, color and speed: functional anatomy by positron emission tomography. J Neurosci 11:2383–2402

    PubMed  CAS  Google Scholar 

  • Craighero L, Fadiga L, Rizzolatti G, Umilta C (1998) Visuomotor priming. Vis Cogn 5:109–125

    Article  Google Scholar 

  • Deubel H, Schneider WX (1996) Saccade target selection and object recognition: evidence for a common attentional mechanism. Vision Res 36:1827–1837

    Article  PubMed  CAS  Google Scholar 

  • Deubel H, Schneider WX (2003) Delayed saccades, but not delayed manual aiming movements, require visual attention shifts. Ann N Y Acad Sci 1004:289–296

    Article  PubMed  Google Scholar 

  • Deubel H, Schneider WX (2004) Attentional selection in sequential manual movements, movements around an obstacle and in grasping. In: Humphreys GW, Riddoch MJ (eds) Attention in action. Psychology, Hove

    Google Scholar 

  • Deubel H, Schneider WX, Paprotta I (1998) Selective dorsal and ventral processing: evidence for a common attentional mechanism in reaching and perception. Vis Cogn 5:81–107

    Article  Google Scholar 

  • Eriksen CW, St. James JD (1986) Visual attention within and around focal attention: a zoom lens model. Percept Psychophys 40(4):225–240

    PubMed  CAS  Google Scholar 

  • Eriksen CW, Yeh YY (1985) Allocation of attention in the visual field. J Exp Psychol Hum Percept Perform 11:583–597

    Article  PubMed  CAS  Google Scholar 

  • Fischer B, Weber H (1993) Express saccades and visual attention. Behav Brain Sci 16:588–589

    Article  Google Scholar 

  • Gersch TM, Kowler E, Dosher B (2004) Dynamic allocation of visual attention during the execution of sequences of saccades. Vision Res 44:1469–1483

    Article  PubMed  Google Scholar 

  • Godijn R, Theeuwes J (2003) Parallel allocation of attention prior to the execution of saccade sequences. J Exp Psychol Hum Percept Perform 29(5):882–896

    Article  PubMed  Google Scholar 

  • Graziano MSA, Gross CG (1994) Mapping space with neurons. Curr Dir Psychol Sci 3:164–167

    Article  Google Scholar 

  • Hahn S, Kramer AF (1998) Further evidence for the division of attention among noncontiguous locations. Vis Cogn 5:217–256

    Article  Google Scholar 

  • Hayhoe M, Land M, Shrivastava A (1999) Coordination of eye and hand movements in a normal environment. Invest Ophthalmol Vis Sci 40:S380

    Google Scholar 

  • Hoffman JE, Subramaniam B (1995) The role of visual attention in saccadic eye movements. Percept Psychophys 57:787–795

    PubMed  CAS  Google Scholar 

  • Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314

    Article  Google Scholar 

  • Intriligator J, Cavanagh P (2001) The spatial resolution of visual attention. Cogn Psychol 43:171–216

    Article  CAS  PubMed  Google Scholar 

  • Kettner RE, Marcario JK, Port NI (1996) Control of remembered reaching sequences in monkey II. Storage and preparation before movement in motor and premotor cortex. Exp Brain Res 112:317–358

    Google Scholar 

  • Konen CS, Kleiser R, Wittsack HJ, Bremmer F, Seitz RJ (2004) The encoding of saccadic eye movements within human posterior parietal cortex. Neuroimage 22:304–314

    Article  PubMed  Google Scholar 

  • Kowler E, Anderson E, Dosher B, Blaser E (1995) The role of attention in the programming of saccades. Vis Res 35:1897–1916

    Article  PubMed  CAS  Google Scholar 

  • Kramer AF, Hahn S (1995) Splitting the beam: distribution of attention over noncontiguous regions of the visual field. Psychol Sci 6:381–386

    Article  Google Scholar 

  • Kritikos A, Bennett KMB, Dunai J, Castiello U (2000) Interference from distractors in reach-to-grasp movements. Q J Exp Psychol 53:131–151 49

    Article  CAS  Google Scholar 

  • Krose B, Julesz B (1989) The control and speed of shifts in attention. Vis Res 29:1607–1619

    Article  PubMed  CAS  Google Scholar 

  • Land MF, Mennie N, Rusted J (1999) Eye movements and the roles of vision in activities of daily living: making a cup of tea. Perception 28:1311–1328

    Article  PubMed  CAS  Google Scholar 

  • LaBerge D, Brown V (1989) Theory of attentional operation in shape identification. Psychol Rev 96:101–124

    Article  Google Scholar 

  • Logan GD (2005) The time it takes to switch attention. Psychon Bull Rev 12(4):647–653

    PubMed  Google Scholar 

  • Mackeben M, Nakayama K (1993) Express attentional shifts. Vis Res 33(1):85–90

    Article  PubMed  CAS  Google Scholar 

  • Madden D (1992) Selective attention and visual search: revision of an allocation model and application to age differences. J Exp Psychol Hum Percept Psychophys 18:821–836

    Article  CAS  Google Scholar 

  • Mazzoni P, Bracewell RM, Barash S, Andersen RA (1996) Motor intention activity in the macaque’s lateral intraparietal area. I. Dissociation of motor plan from sensory memory. J Neurophysiol 76(3):1439–1456

    PubMed  CAS  Google Scholar 

  • Medendorp WP, Goltz HC, Vilis T (2006) Directional selectivity of BOLD activity in human posterior parietal cortex for memory-guided double-step saccades. J Neurophysiol 95:1645–1655

    Article  PubMed  Google Scholar 

  • Moore T, Armstrong KM (2003) Selective gating of visual signals by microstimulation of frontal cortex. Nature 421:370

    Article  PubMed  CAS  Google Scholar 

  • Moore T, Fallah M (2004) Microstimulation of the frontal eye field and its effects on covert spatial attention. J Neurophysiol 91:152–162

    Article  PubMed  Google Scholar 

  • Moore T, Fallah M (2001) Control of eye movements and spatial attention. Proc Nat Acad Sci 98(3):1273–1276

    Article  PubMed  CAS  Google Scholar 

  • Mushiake H, Saito N, Sakamoto K, Itoyama Y, Tanji J (2006) Activity in the lateral prefrontal cortex reflects multiple steps of future events in action plans. Neuron 50:631–641

    Article  PubMed  CAS  Google Scholar 

  • Neumann O (1987) Beyond capacity: a functional view of attention. In: Heuer H, Sanders AF (eds) Perspectives on perception and action. Lawrence Erlbaum, Hillsdale, pp. 361–394

    Google Scholar 

  • Posner MI (1980) Orienting of attention. Q J Exp Psychol 32:3–25

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Riggio L, Sheliga BM (1994) Space and selective attention. In: Umilta C, Moscovitch M (eds) Attention and performance XV. Conscious and nonconscious information processing. MIT, Cambridge, pp. 231–265

    Google Scholar 

  • Schiegg A, Deubel H, Schneider WX (2003) Attentional selection during preparation of prehension movements. Vis Cogn 10(4):409

    Article  Google Scholar 

  • Schneider WX (1995) VAM: a neuro-cognitive model for attention control of segmentation, object recognition and space-based motor action. Vis Cogn 2:331–374

    Article  Google Scholar 

  • Schneider WX, Deubel H (2002) Selection-for-perception and selection-for-spatial motor-action are coupled by visual attention: a review of recent findings and new evidence from stimulus-driven saccade control. In: Prinz W, Hommel B (eds) Attention and performance XIX: common mechanisms in perception and action. Oxford University Press, Oxford, 609–627

    Google Scholar 

  • Snyder LH, Batista AP, Andersen RA (1997) Coding of intention on the posterior parietal cortex. Nature 386:167–170

    Article  PubMed  CAS  Google Scholar 

  • Snyder LH, Batista AP, Andersen RA (2000) Intention-related activity in the posterior parietal cortex. Vision Res 40:1433–1441

    Article  PubMed  CAS  Google Scholar 

  • Treisman A, Gelade G (1980) A feature–integration theory of attention. Cogn Psychol 12(1):97–136

    Article  CAS  PubMed  Google Scholar 

  • Wardak C, Ibos G, Duhamel J, Olivier E (2006) Contribution of the monkey frontal eye field to covert visual attention. J Neurosci 26(16):4228–4235

    Article  PubMed  CAS  Google Scholar 

  • Ward R, Duncan J, Shapiro K (1996) The slow time course of visual attention. Cogn Psychol 30:79–109

    Article  PubMed  Google Scholar 

  • Wolf W, Deubel H (1997) P31 phosphor persistence at phototopic luminance level. Spat Vis 4:323–333

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Deutsche Forschungsgemeinschaft (Graduate Program GRK 1091 to DB and Research Group De 336/2 to HD) and by the Cluster of Excellence “Cognition for Technical Systems”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Baldauf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldauf, D., Deubel, H. Properties of attentional selection during the preparation of sequential saccades. Exp Brain Res 184, 411–425 (2008). https://doi.org/10.1007/s00221-007-1114-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-1114-x

Keywords

Navigation