Skip to main content
Log in

Influence of galvanic vestibular stimulation on egocentric and object-based mental transformations

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The vestibular system analyses angular and linear accelerations of the head that are important information for perceiving the location of one’s own body in space. Vestibular stimulation and in particular galvanic vestibular stimulation (GVS) that allow a systematic modification of vestibular signals has so far mainly been used to investigate vestibular influence on sensori-motor integration in eye movements and postural control. Comparatively, only a few behavioural and imaging studies have investigated how cognition of space and body may depend on vestibular processing. This study was designed to differentiate the influence of left versus right anodal GVS compared to sham stimulation on object-based versus egocentric mental transformations. While GVS was applied, subjects made left-right judgments about pictures of a plant or a human body presented at different orientations in the roll plane. All subjects reported illusory sensations of body self-motion and/or visual field motion during GVS. Response times in the mental transformation task were increased during right but not left anodal GVS for the more difficult stimuli and the larger angles of rotation. Post-hoc analyses suggested that the interfering effect of right anodal GVS was only present in subjects who reported having imagined turning themselves to solve the mental transformation task (egocentric transformation) as compared to those subjects having imagined turning the picture in space (object-based mental transformation). We suggest that this effect relies on shared functional and cortical mechanisms in the posterior parietal cortex associated with both right anodal GVS and mental imagery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The upright (0°) and the upside-down conditions (180°) were not included in this first ANOVA since they cannot be assigned to either a clockwise or counterclockwise Stimulus Orientation and subjects reported having used other strategies than mental rotation for the 180°angle (see below).

References

  • Bächtold D, Baumann T, Sandor PS, Kritos M, Regard M, Brugger P (2001) Spatial- and verbal-memory improvement by cold-water caloric stimulation in healthy subjects. Exp Brain Res 136:128–132

    Article  PubMed  Google Scholar 

  • Bent LR, McFadyen BJ, Merkley VF, Kennedy PM, Inglis JT (2000) Magnitude effects of galvanic vestibular stimulation on the trajectory of human gait. Neurosci Lett 279:157–160

    Article  PubMed  CAS  Google Scholar 

  • Blanke O, Landis T, Spinelli L, Seeck M (2004) Out-of-body experience and autoscopy of neurological origin. Brain 127:243–258

    Article  PubMed  Google Scholar 

  • Blanke O, Mohr C, Michel CM, Pascual-Leone A, Brugger P, Seeck M, Landis T, Thut G (2005) Linking out-of-body experience and self processing to mental own-body imagery at the temporoparietal junction. J Neurosci 25:550–557

    Article  PubMed  CAS  Google Scholar 

  • Blanke O, Ortigue S, Landis T, Seeck M (2002) Stimulating illusory own-body perceptions. Nature 419:269–270

    Article  PubMed  CAS  Google Scholar 

  • Bottini G, Paulesu E, Gandola M, Loffredo S, Scarpa P, Sterzi R, Santilli I, Defanti CA, Scialfa G, Fazio F, Vallar G (2005) Left caloric vestibular stimulation ameliorates right hemianesthesia. Neurology 65:1278–1283

    Article  PubMed  CAS  Google Scholar 

  • Brainard DH (1997) The psychophysics toolbox. Spatial Vision 10:443–446

    Google Scholar 

  • Brandt T, Schautzer F, Hamilton DA, Bruning R, Markowitsch HJ, Kalla R, Darlington C, Smith P, Strupp M (2005) Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans. Brain 128:2732–2741

    Article  PubMed  Google Scholar 

  • Cappa S, Sterzi R, Vallar G, Bisiach E (1987) Remission of hemineglect and anosognosia during vestibular stimulation. Neuropsychologia 25:775–782

    Article  PubMed  CAS  Google Scholar 

  • Cooper L (1975) Mental rotation of random two-dimensional shapes. Cogn Psychol 7:20–43

    Article  Google Scholar 

  • Creem SH, Downs TH, Wraga M, Harrington GS, Proffitt DR, Downs JH 3rd (2001) An fMRI study of imagined self-rotation. Cogn Affect Behav Neurosci 1:239–249

    Article  PubMed  CAS  Google Scholar 

  • Devinsky O, Feldmann E, Burrowes K, Bromfield E (1989) Autoscopic phenomena with seizures. Arch Neurol 46:1080–1088

    PubMed  CAS  Google Scholar 

  • Fink GR, Marshall JC, Weiss PH, Stephan T, Grefkes C, Shah NJ, Zilles K, Dieterich M (2003) Performing allocentric visuospatial judgments with induced distortion of the egocentric reference frame: an fMRI study with clinical implications. Neuroimage 20:1505–1517

    Article  PubMed  Google Scholar 

  • Fitzpatrick RC, Day BL (2004) Probing the human vestibular system with galvanic stimulation. J Appl Physiol 96:2301–2316

    Article  PubMed  Google Scholar 

  • Fitzpatrick RC, Marsden J, Lord SR, Day BL (2002) Galvanic vestibular stimulation evokes sensations of body rotation. Neuroreport 13:2379–83

    Article  PubMed  Google Scholar 

  • George MS, Wassermann EM, Post RM (1996) Transcranial magnetic stimulation: a neuropsychiatric tool for the 21st century. J Neuropsychiatry Clin Neurosci 8:373–382

    PubMed  CAS  Google Scholar 

  • Glasauer S, Amorim MA, Viaud-Delmon I, Berthoz A (2002) Differential effects of labyrinthine dysfunction on distance and direction during blindfolded walking of a triangular path. Exp Brain Res 145:489–497

    Article  PubMed  CAS  Google Scholar 

  • Grabherr L, Bach S, Indermaur K, Metzler S, Mast F (2007) Mental transformations of bodies and body-parts in microgravity. J Vest Res (in press)

  • Hartley T, Maguire EA, Spiers HJ, Burgess N (2003) The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron 37:877–888

    Article  PubMed  CAS  Google Scholar 

  • Jordan K, Wustenberg T, Heinze HJ, Peters M, Jancke L (2002) Women and men exhibit different cortical activation patterns during mental rotation tasks. Neuropsychologia 40:2397–2408

    Article  PubMed  Google Scholar 

  • Kahane P, Hoffmann D, Minotti L, Berthoz A (2003) Reappraisal of the human vestibular cortex by cortical electrical stimulation study. Ann Neurol 54:615–624

    Article  PubMed  Google Scholar 

  • Karnath HO, Dieterich M (2006) Spatial neglect-a vestibular disorder? Brain 129:293–305

    Article  PubMed  Google Scholar 

  • Kosslyn SM, DiGirolamo GJ, Thompson WL, Alpert NM (1998) Mental rotation of objects versus hands: neural mechanisms revealed by positron emission tomography. Psychophysiology 35:151–161

    Article  PubMed  CAS  Google Scholar 

  • Lacour M, Bonnet M, Roll JP (1974) [Spinal effects of electric vestibular stimulation in man. Demonstrated evidence of vestibular prevalence and role in motion laterality]. Acta Otolaryngol 78:399–409

    PubMed  CAS  Google Scholar 

  • Lane NE, Kennedy, RS (1988) A new method for quantifying simulator sickness: development and application of the simulator sickness questionnaire (SSQ). Technical Report No. EOTR 88-7, Essex Corporation, Orlando

  • Lenggenhager B, Smith S, Blanke O (2006) Functional and neural mechanisms of embodiment: Importance of the vestibular system and the temporal parietal junction. Rev Neurosci 17:643–657

    PubMed  CAS  Google Scholar 

  • Lobel E, Kleine JF, Bihan DL, Leroy-Willig A, Berthoz A (1998) Functional MRI of galvanic vestibular stimulation. J Neurophysiol 80:2699–2709

    PubMed  CAS  Google Scholar 

  • Lopez C, Blanke O (2007) Neuropsychology and neurophysiology of self-consciousness. Multisensory and vestibular mechanisms. In: Holderegger A, Sitter-Liver B, Hess CW (eds) Hirnforschung und Menschenbild. Beiträge zur interdisziplinären Verständigung. Schwabe, Basel

    Google Scholar 

  • Lopez C, Lacour M, Ballester M, Dumitrescu M, Anton J-L, Nazarian B, Roth M, Borel L (2005) Brain activations during subjective visual vertical judgment: a functional magnetic resonance imaging study. Gait and Posture 21(Suppl 1):13

    Google Scholar 

  • MacDougall HG, Brizuela AE, Burgess AM, Curthoys IS (2002) Between-subject variability and within-subject reliability of the human eye-movement response to bilateral galvanic (DC) vestibular stimulation. Exp Brain Res 144:69–78

    Article  PubMed  Google Scholar 

  • MacDougall HG, Moore ST, Curthoys IS, Black FO (2006) Modeling postural instability with Galvanic vestibular stimulation. Exp Brain Res 172:208–220

    Article  PubMed  Google Scholar 

  • Mars F, Vercher JL, Popov K (2005) Dissociation between subjective vertical and subjective body orientation elicited by galvanic vestibular stimulation. Brain Res Bull 65:77–86

    Article  PubMed  Google Scholar 

  • Mast FW, Meissner F (2004) Mental transformations of perspective during whole-body roll-rotation. J Vestib Res 14:113

    Google Scholar 

  • Mast FW, Merfeld DM, Kosslyn SM (2006) Visual mental imagery during caloric vestibular stimulation. Neuropsychologia 44:101–109

    Article  PubMed  Google Scholar 

  • Ohlmann T, Marendaz C (1991) Vicarious processes involved in spatial perception. In: Wapner S (ed) Bio-psycho-social factors in cognitive style. Lawrence Erlbaum, Hillsdale, pp 106–129

    Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Parsons LM (1987) Imagined spatial transformation of one’s body. J Exp Psychol Gen 116:172–191

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Leone A, Rubio B, Pallardo F, Catala MD (1996) Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet 348:233–237

    Article  PubMed  CAS  Google Scholar 

  • Pelli DG (1997) The VideoToolbox sotware for visual psychophysics: transforming numbers into movies. Spat Vis 10:437–442

    PubMed  CAS  Google Scholar 

  • Penfield W, Erickson T (1941) Epilepsy and Cerebral Localization, Charles C. Thomas, Springfield

  • Peruch P, Borel L, Gaunet F, Thinus-Blanc G, Magnan J, Lacour M (1999) Spatial performance of unilateral vestibular defective patients in nonvisual versus visual navigation. J Vestib Res 9:37–47

    PubMed  CAS  Google Scholar 

  • Peruch P, Borel L, Magnan J, Lacour M (2005) Direction and distance deficits in path integration after unilateral vestibular loss depend on task complexity. Brain Res Cogn Brain Res 25:862–872

    Article  PubMed  Google Scholar 

  • Quarck G, Etard O, Normand H, Pottier M, Denise P (1998) Low intensity galvanic vestibulo-ocular reflex in normal subjects. Neurophysiol Clin 28:413–422

    Article  PubMed  CAS  Google Scholar 

  • Rode G, Charles N, Perenin MT, Vighetto A, Trillet M, Aimard G (1992) Partial remission of hemiplegia and somatoparaphrenia through vestibular stimulation in a case of unilateral neglect. Cortex 28:203–208

    PubMed  CAS  Google Scholar 

  • Rodionov V, Zislin J, Elidan J (2004) Imagination of body rotation can induce eye movements. Acta Otolaryngol 124:684–689

    Article  PubMed  Google Scholar 

  • Saj A, Honore J, Rousseaux M (2006) Perception of the vertical in patients with right hemispheric lesion: Effect of galvanic vestibular stimulation. Neuropsychologia 44:1509–1512

    Article  PubMed  CAS  Google Scholar 

  • Shepard RN, Metzler J (1971) Mental rotation of three-dimensional objects. Science 171:701–703

    Article  PubMed  CAS  Google Scholar 

  • Smith PF, Zheng Y, Horii A, Darlington CL (2005) Does vestibular damage cause cognitive dysfunction in humans? J Vestib Res 15:1–9

    PubMed  Google Scholar 

  • Stephan T, Deutschlander A, Nolte A, Schneider E, Wiesmann M, Brandt T, Dieterich M (2005) Functional MRI of galvanic vestibular stimulation with alternating currents at different frequencies. Neuroimage 26:721–732

    Article  PubMed  Google Scholar 

  • Vallar G (1998) Spatial Hemineglect in Human. Trends Cogn Sci 2:87–97

    Article  Google Scholar 

  • Vallar G, Lobel E, Galati G, Berthoz A, Pizzamiglio L, Le Bihan D (1999) A fronto-parietal system for computing the egocentric spatial frame of reference in humans. Exp Brain Res 124:281–286

    Article  PubMed  CAS  Google Scholar 

  • Vingerhoets G, Santens P, Van Laere K, Lahorte P, Dierckx RA, De Reuck J (2001) Regional brain activity during different paradigms of mental rotation in healthy volunteers: a positron emission tomography study. Neuroimage 13:381–391

    Article  PubMed  CAS  Google Scholar 

  • Vogeley K, Fink GR (2003) Neural correlates of the first-person-perspective. Trends Cogn Sci 7:38–42

    Article  PubMed  Google Scholar 

  • Wraga M, Shephard JM, Church JA, Inati S, Kosslyn SM (2005) Imagined rotations of self versus objects: an fMRI study. Neuropsychologia 43:1351–1361

    Article  PubMed  Google Scholar 

  • Zacks JM, Michelon P (2005) Transformations of visuospatial images. Behav Cogn Neurosci Rev 4:96–118

    Article  PubMed  Google Scholar 

  • Zacks JM, Tversky B (2005) Multiple systems for spatial imagery: transformations of objects and bodies. Spatial Cognit Comput 5:271–306

    Article  Google Scholar 

  • Zacks J, Rypma B, Gabrieli JD, Tversky B, Glover GH (1999) Imagined transformations of bodies: an fMRI investigation. Neuropsychologia 37:1029–1040

    Article  PubMed  CAS  Google Scholar 

  • Zink R, Bucher SF, Weiss A, Brandt T, Dieterich M (1998) Effects of galvanic vestibular stimulation on otolithic and semicircular canal eye movements and perceived vertical. Electroencephalogr Clin Neurophysiol 107:200–205

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Cogito Foundation, the Fondation de Famille Sandoz, the Fondation Odier de Psychophysique, and the Swiss National Science Foundation. We thank Pär Halje for the programming of the stimuli and Dr. Raphaël Holzer for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Blanke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (PDF 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenggenhager, B., Lopez, C. & Blanke, O. Influence of galvanic vestibular stimulation on egocentric and object-based mental transformations. Exp Brain Res 184, 211–221 (2008). https://doi.org/10.1007/s00221-007-1095-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-1095-9

Keywords

Navigation