Skip to main content
Log in

Visuo-motor learning with combination of different rates of motor imagery and physical practice

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Sports psychology suggests that mental rehearsal facilitates physical practice in athletes and clinical rehabilitation attempts to use mental rehearsal to restore motor function in hemiplegic patients. Our aim was to examine whether mental rehearsal is equivalent to physical learning, and to determine the optimal proportions of real execution and rehearsal. Subjects were asked to grasp an object and insert it into an adapted slot. One group (G0) practiced the task only by physical execution (240 trials); three groups imagined performing the task in different rates of trials (25%, G25; 50%, G50; 75%, G75), and physically executed movements for the remaining trials; a fourth, control group imagined a visual rotation task in 75% of the trials and then performed the same motor task as the others groups. Movement time (MT) was compared for the first and last physical trials, together with other key trials, across groups. All groups learned, suggesting that mental rehearsal is equivalent to physical motor learning. More importantly, when subjects rehearsed the task for large numbers of trials (G50 and G75), the MT of the first executed trial was significantly shorter than the first executed trial in the physical group (G0), indicating that mental practice is better than no practice at all. Comparison of the first executed trial in G25, G50 and G75 with the corresponding trials in G0 (61, 121 and 181 trials), showed equivalence between mental and physical practice. At the end of training, the performance was much better with high rates of mental practice (G50/G75) compared to physical practice alone (G0), especially when the task was difficult. These findings confirm that mental rehearsal can be beneficial for motor learning and suggest that imagery might be used to supplement or partly replace physical practice in clinical rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beisteiner R, Hollinger P, Lindinger G, Lang W, Berthoz A (1995) Mental representations of movements. Brain potentials associated with imagination of hand movements. Electroencephalogr Clin Neurophysiol 96:183–193

    Article  PubMed  CAS  Google Scholar 

  • Burhans RS, Richman CL, Bergey DB (1988) Mental imagery training: effects on running speed performance. Int J Sport Psychol 19:26–31

    Google Scholar 

  • Caldara R, Deiber MP, Andrey C, Michel CM, Thut G, Hauert CA (2004) Actual and mental motor preparation and execution: a spatiotemporal ERP study. Exp Brain Res 159:389–399

    Article  PubMed  Google Scholar 

  • Crammond DJ (1997) Motor imagery: never in your wildest dream. TINS 20(2):54–57

    PubMed  CAS  Google Scholar 

  • Dankert J, Ferber S, Doherty T, Steinmetz H, Nicolle D, Goodale MA (2002) Selective, non-lateralized impairement of motor imagery following right parietal damage. Neurocase 8:194–204

    Google Scholar 

  • Decety J, Jeannerod M (1995) Mentally simulated movements in virtual reality: does Fitts’s law hold in motor imagery? Behav Brain Res 72(1–2):127–134

    Article  PubMed  CAS  Google Scholar 

  • Decety J, Michel F (1989) Comparative analysis of actual and mental movement times in two graphic tasks. Brain Cogn 11(1):87–97

    Article  PubMed  CAS  Google Scholar 

  • Decety J, Jeannerod M, Durozard D, Baverel G (1993) Central activation of autonomic effectors during mental simulation of motor actions in man. J Physiol 461:549–563

    PubMed  CAS  Google Scholar 

  • Decety J, Perani D, Jeannerod M, Bettinardi V, Tadary B, Woods R, Mazziotta JC, Fazio F (1994) Mapping motor representations with positron emission tomography. Nature 371(6498):600–602

    Article  PubMed  CAS  Google Scholar 

  • Dickstein R, Dunsky A, Marcovitz E (2004) Motor imagery for gait rehabilitation in post-stroke hemiparesis. Phys Ther 84(12):1167–1177

    PubMed  Google Scholar 

  • Dominey P, Decety J, Broussolle E, Chazot G, Jeannerod M (1995) Motor imagery of a lateralized sequential task is asymmetrically slowed in hemi-parkinsonien’s patients. Neuropsychologia 33(6):727–741

    Article  PubMed  CAS  Google Scholar 

  • Fadiga L, Buccino G, Craighero L, Fogassi L, Gallese V, Pavesi G (1999) Corticospinal excitability is specially modulated by motor imagery: a magnetic stimulation study. Neuropsychologia 37:147–158

    Article  PubMed  CAS  Google Scholar 

  • Feltz DL, Landers DM (1983) The effects of mental practice on motor skill learning and performance: a meta-analysis. J Sport Psychol 5:25–57

    Google Scholar 

  • Frak V, Paulignan Y, Jeannerod M (2001) Orientation of the opposition axis in mentally simulated grasping. Exp Brain Res 136:120–127

    Article  PubMed  CAS  Google Scholar 

  • Gaggioli A, Morganti F, Walker R, Meneghini A, Alcaniz M, Lozano JA, Montesa J, Gil JA, Riva G (2004) Training with computer-supported motor imagery in post-stroke rehabilitation. Cyberpsychol Behav 7(3):327–332

    Article  PubMed  CAS  Google Scholar 

  • Gentili R, Papaxanthis C, Pozzo DT (2006) Improvement and generalization of arm motror performance through motor imagery practice. Neuroscience 137:761–772

    Article  PubMed  CAS  Google Scholar 

  • Gerardin E, Sirigu A, Lehericy S, Poline JBB, Gaymard B, Marsault C, Agid Y, Le Bihan D (2000) Partially overlapping neural networks for real and imagined hand movements. Cereb Cortex 10(11):1093–1104

    Article  PubMed  CAS  Google Scholar 

  • Hanakawa T, Immisch I, Toma K, Dimyan MA, Van Gelderen P, Mark Hallett M (2003) Functional properties of brain areas associated with motor execution and imagery. J Neurophysiol 89:989–1002

    Article  PubMed  Google Scholar 

  • Hashimoto R, Rothwell JC (1999) Dynamic changes in corticospinal excitability during motor imagery. Exp Brain Res Mar 125(1):75–81

    Article  CAS  Google Scholar 

  • Hird JS, Landers DM, Thomas JR, Horan JJ (1991) Physical practice is superior to mental practice in enhancing cognitive and motor task performance. J Sport Exerc Psychol 13:281–293

    Google Scholar 

  • Jackson PL, Lafleur MF, Malouin F, Richards C, Doyon J (2001) Potential role of mental practice using motor imagery in neurologic rehabilitation. Arch Phys Med Rehabil 82(8):1133–1141

    Article  PubMed  CAS  Google Scholar 

  • Jackson PL, Lafleur MF, Malouin F, Richards CL, Doyon J (2003) Functional cerebral reorganization following motor sequence learning through mental practice with motor imagery. Neuroimage 20(2):1171–1180

    Article  PubMed  Google Scholar 

  • Jackson PL, Doyon J, Richards CL, Malouin F (2004) The efficacy of combined physical and mental practice in the learning of a foot-sequence task after stroke: a case report. Neurorehabil Neural Repair 18(2):106–111

    Article  PubMed  Google Scholar 

  • Jeannerod M (1995) Mental imagery in the motor context. Neuropsychologia 33(11):1419–1432

    Article  PubMed  CAS  Google Scholar 

  • Jeannerod M (2001) Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage 14:S103–S109

    Article  PubMed  CAS  Google Scholar 

  • Jeannerod M, Frak V (1999) Mental imaging of motor activity in humans. Curr Opin Neurobiol 9:735–739

    Article  PubMed  CAS  Google Scholar 

  • Lacourse MG, Turner JA, Randolph-Orr E, Schandler SL, Cohen MJ (2004) Cerebral and cerebellar sensorimotor plasticity following motor imagery-based mental practice of a sequential movement. J Rehabil Res Dev 41(4):505–524

    Article  PubMed  Google Scholar 

  • Lafleur MF, Jackson PL, Malouin F, Richards CL, Evans AC, Doyon J (2002) Motor learning produces parallel dynamic functional changes during the execution and imagination of sequential foot movements. Neuroimage 16(1):142–157

    Article  PubMed  Google Scholar 

  • Liu KP, Chan CC, Lee TM, Hui-Chan CW (2004) Mental imagery for promoting relearning for people after stroke: a randomized controlled trial. Arch Phys Med Rehabil 85:1403–1408

    Article  PubMed  Google Scholar 

  • McFarland DJ, Miner LA, Vaughan TM, Wolpaw JR (2000) Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr 12(3):177–186

    Article  PubMed  CAS  Google Scholar 

  • Mulder T, Zijlstra S, Zijlstra W, Hochstenbach J (2004) The role of motor imagery in learning a totally novel movement. Exp Brain Res 154:211–217

    Article  PubMed  Google Scholar 

  • Ozel S, Larue J, Dosseville F (2004) Effect of arousal on internal clock speed in real action and mental imagery. Can J Exp Psychol 58(3):196–205

    PubMed  Google Scholar 

  • Page SJ, Levine P, Sisto SA, Johnston MV (2001) Mental practice combined with physical practice for upper-limb motor deficit in subacute stroke. Phys Ther 81(8):1455–1462

    PubMed  CAS  Google Scholar 

  • Papaxanthis C, Pozzo T, Skoura X, Chieppati M (2002) Does order and timing in performance of imagined and actual movements affect the motor imagery process? The duration of walking and writing task. Behav Brain Res 134:209–215

    Article  PubMed  Google Scholar 

  • Papaxanthis C, Pozzo T, Kasprinski R, Berthoz A (2003) Comparison of actual and imagined execution of whole-body movements after a long exposure to microgravity. Neurosci Lett 339:41–44

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Leone A, Nguyet D, Cohen LG, Brasil-Neto JP, Cammarota A, Hallett M (1995) Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophysiol 74:1037–1045

    PubMed  CAS  Google Scholar 

  • Porretta DL, Surburg PR (1995) Imagery and physical practice in the acquisition of gross motor timing of coincidence by adolescents with mild mental retardation. Percept Mot Skills 80(3 Pt 2):1171–1183

    PubMed  CAS  Google Scholar 

  • Ranganathan VH, Siemionow V, Liu JZ, Sahgal V, Yue GH (2004) From mental power to muscle power—gaining strength by using the mind. Neuropsychologia 42:944–956

    Article  PubMed  Google Scholar 

  • Romero DH, Lacourse MG, Lawrence KE, Schandler S, Cohen MJ (2000) Event-related potentials as a function of movement parameter variations during motor imagery and isometric action. Behav Brain Res 117:83–96

    Article  PubMed  CAS  Google Scholar 

  • Sirigu A, Duhamel JR, Cohen L, Pillon B, Dubois B, Agid Y (1996) The mental representation of hand movements after parietal cortex damage. Science 273(5281):1564–1568

    Article  PubMed  CAS  Google Scholar 

  • Stevens JA, Stoykov MEP (2003) Using motor imagery in the rehabilitation of hemiparesis. Arch Phys Med Rehabil 84:1090–1092

    Article  PubMed  Google Scholar 

  • Yaguez L, Nagel D, Hoffman H, Canavan AGM, Wist E, Homberg V (1998) A mental route to motor learning: improving trajectorial kinematics through imagery training. Behav Brain Res 90:95–106

    Article  PubMed  CAS  Google Scholar 

  • Yoo E, Park E, Chung B (2001) Mental practice effect on line-tracing accuracy in persons with hemiparetic stroke: a preliminary study. Arch Phys Med Rehabil 82:1213–1218

    Article  PubMed  CAS  Google Scholar 

  • Yue G, Cole KJ (1992) Strength increases from the motor program: comparison of training with maximal voluntary and imagined muscle contractions. J Neurophysiol 67(5):1114–1123

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Pr. Marc Jeannerod, Drs. Martine Meunier and Richard Walker for their insightful comments and discussions. This work was supported by EU grant: IST programme (Project I-Learning, IST 2001-38861).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Paulignan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allami, N., Paulignan, Y., Brovelli, A. et al. Visuo-motor learning with combination of different rates of motor imagery and physical practice. Exp Brain Res 184, 105–113 (2008). https://doi.org/10.1007/s00221-007-1086-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-1086-x

Keywords

Navigation