Skip to main content
Log in

The effects of inverting prisms on the horizontal–vertical illusion: a systematic effect of downward gaze

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The purpose of this work is to compare the relative contributions from the extraocular and sensory systems on the magnitude of the horizontal–vertical illusion (HVI). The visual HVI refers to the general tendency to overestimate vertical extensions of small-scale lines on a picture plane relative to the horizontal by 4–16% depending on the method of measurement. The HVI line stimuli consisted of luminous vertical and horizontal lines forming “L-profiles” located in the frontoparallel plane at a 45 cm viewing distance, collinearly with a binocular gaze. The home position of gaze was aligned to the center of the screen with the ear–eye angle concordant with the environmental horizontal. Illusion strength was quantified when subjects fixated the HVI line stimuli in four quadrants of the visual field. The HVI was also viewed through prism lenses that inverted the retinal images by 180°, thereby dissociating the sensory “up-down” direction from the oculomotor up-down frame of reference. The results revealed a systematically lower magnitude of the HVI in the bottom visual field regardless of whether subjects fixated the HVI with the distorting prisms or without. Taken together, these results suggest that the HVI is sensitive to small-angle gaze shifts. In agreement with several recent findings, these results are interpreted as implying that the brain imposes an enhanced analytic structure on the ascending sensory information during downward gaze.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen RA, Snyder LH, Bradley DC, Xing J (1997) Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu Rev Neurosci 20:303–330

    Article  PubMed  CAS  Google Scholar 

  • Andersen RA, Mountcastle VB (1983) The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J Neurosci. 3:532–548

    PubMed  CAS  Google Scholar 

  • Andersen RA, Essick GK, Siegel RM (1985) Encoding of spatial location by posterior parietal neurons. Science 25:456–458

    Article  Google Scholar 

  • Armstrong L, Marks E (1997) Differential effects of stimulus context on perceived length: implications for the horizontal-vertical illusion. Percept Psychophys 59:1200–1213

    PubMed  CAS  Google Scholar 

  • Atchison DA, Claydon CA, Irwin SE (1994) Amplitude of accommodation for different head positions and different directions of eye gaze. Optom Vis Sci 71:339–345

    Article  PubMed  CAS  Google Scholar 

  • Attneave F, Block G (1974) The time required to compare extents in various orientations Percept Psychophys 16:431–436

    Google Scholar 

  • Binsted G, Heath M (2005) No evidence of a lower visual field specialization for visuomotor control. Exp Brain Res 162:89–94

    Article  PubMed  Google Scholar 

  • Brotchie PR, Andersen RA, Snyder LH, Goodman SJ (1995) Head position signals used by parietal neurons to encode locations of visual stimuli. Nature 18:232–235

    Article  Google Scholar 

  • Dankert J, Goodale MA (2001) Superior performance for visually guided pointing in the lower visual field. Exp Brain Res 137:303–308

    Article  Google Scholar 

  • Galletti C, Kutz DF, Gamberini M, Breveglieri R, Fattori P (2003) Role of the medial parieto-occipital cortex in the control of reaching and grasping movements. Exp Brain Res 153:158–170

    Article  PubMed  Google Scholar 

  • Girgus JS, Coren S (1975) Depth cues and constancy scaling in the horizontal-vertical illusion: the bisection error. Can J Psychol 29(1):59–65

    PubMed  CAS  Google Scholar 

  • Von Grünau M, Dubé S (1994) Visual search asymmetry for viewing direction. Percept Psychophys 56:211–220

    Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    Article  PubMed  CAS  Google Scholar 

  • Guski R, Rudolph R, Schindauer T (1993) Zur Funktionalität der “Vertikalen-Täuschung” [The functional aspects of horizontal-vertical illusion]. Ruhr-Universität Bochum, Fakultät für Psychologie

  • Handy TC, Grafton ST, Shroff NM, Ketay S, Gazzaniga MS (2003) Graspable objects grab attention when the potential for action is recognized. Nat Neurosci 6:421–427

    Article  PubMed  CAS  Google Scholar 

  • He S, Cavanagh P, Intriligator J (1996) Attentional resolution and the locus of visual awareness. Nature 26:334–337

    Article  Google Scholar 

  • Higashiyama A (1996) Horizontal and vertical distance perception: the discorded-orientation theory. Percept Psychophys 58:259–270

    PubMed  CAS  Google Scholar 

  • Imamura K, Onoe H, Watanabe Y, Richter H, Andersson J, Fischer H, Magnusson S, Okura K, Schneider H, Fredrikson M, Långström B (2000) Pet imaging of the adaptation to prism-induced inverted vision. Invest Ophthalmol Vis Sci 39:1047

    Google Scholar 

  • Khan MA, Lawrence GP (2005) Differences in visuomotor control between the upper and lower visual fields. Exp Brain Res 164:395–398

    Article  PubMed  Google Scholar 

  • Kohler I, Pissarek T (1960) Brillenversuche zur Vertikalentäuschung [Spectacle experiments on horizontal-vertical illusion]. Psychol Beiträge 5:117–140

    Google Scholar 

  • Kubi E, Slotnick BM (1993) The horizontal-vertical illusion: transfer of illusion decrement. Percept Mot Skills 77:339–347

    PubMed  CAS  Google Scholar 

  • Künnapas TM (1959) The vertical-horizontal illusion in artificial visual fields. J Psychol 47:41–48

    Google Scholar 

  • Lipshits M, McIntyre J, Zaoui M, Gurfinkel V, Berthoz A (2001) Does gravity play an essential role in the asymmetrical visual perception of vertical and horizontal line length? Acta Astronaut 49:123–130

    Article  PubMed  CAS  Google Scholar 

  • Levine MW, McAnany JJ (2005) The relative capabilities of the upper and lower visual hemifields. Vision Res 45(21):2820–2830

    Article  PubMed  Google Scholar 

  • Mishkin M, Ungerleider LG (1982) Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behav Brain Res 6:57–77

    Article  PubMed  CAS  Google Scholar 

  • Merriam EP, Colby CL (2005) Active vision in parietal and extrastriate cortex. Neuroscientist 11:484–489

    Article  PubMed  Google Scholar 

  • Portin K, Vanni S, Virsu V, Hari R (1999) Stronger occipital cortical activation to lower than upper visual field stimuli. Exp Brain Res 124:287–294

    Article  PubMed  CAS  Google Scholar 

  • Previc FH (1990) Functional specialization in the lower and upper visual fields in humans: its ecological origins and neurophysiological implications. Behav Brain Sci 13:519–575

    Google Scholar 

  • Previc FH (1998) The neuropsychology of 3-D space. Psychol Bull 124:123–164

    Article  PubMed  CAS  Google Scholar 

  • Raudsepp J (2001) Peripersonal horizontal-vertical illusions: towards comparable kinesthetic and visual task. J Hum Mov Stud 41:263–286

    Google Scholar 

  • Raudsepp J, Djupsjöbacka M (2005) Handgrip maximum force and the visual horizontal-vertical illusion. Perception 34(4):421–428

    Article  PubMed  Google Scholar 

  • Richter H, Lee JT, Pardo J (2000) Central correlates of voluntary visual accommodation in humans measured with 15O-water and PET. Eur J Neurosci 12:311–321

    Article  PubMed  CAS  Google Scholar 

  • Richter H, Magnusson S, Imamura K, Fredrikson M, Okura M, Watanabe Y, Långström B (2002) Mental rotation and natural motor performance following successive stages of long term adaptation to prism reversed vision. Exp Brain Res 144:445–457

    Article  PubMed  CAS  Google Scholar 

  • Schuller AM, Rossion B (2005) Spatial attention triggered by eye gaze enhances and speeds up visual processing in upper and lower visual fields beyond early striate visual processing. Clin Neurophysiol 116:2565–2576

    Article  PubMed  Google Scholar 

  • Servos P, Carnahan H, Fedwick J (2000) The visuomotor system resists the horizontal-vertical illusion. J Mot Behav 32:400–404

    Article  PubMed  CAS  Google Scholar 

  • Talgar CP, Carrasco M (2002) Vertical meridian asymmetry in spatial resolution: visual and attentional factors. Psychon Bull Rev 9:714–722

    PubMed  Google Scholar 

  • Trotter Y, Celebrini S (1999) Gaze direction controls response gain in primary visual-cortex neurons. Nature 18:239–242

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the University of Gävle, Gävle, Sweden, Project grant 55-743-04 as well as the Swedish Council for Working Life and Social Research Grant 2005-0488 to HR. We thank our volunteers for their generosity and patience. Barbara Rosborg is acknowledged for her skilled proof reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans O. Richter.

Additional information

Hans O. Richter and Jaanus Raudsepp contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, H.O., Wennberg, P. & Raudsepp, J. The effects of inverting prisms on the horizontal–vertical illusion: a systematic effect of downward gaze. Exp Brain Res 183, 9–15 (2007). https://doi.org/10.1007/s00221-007-1015-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-1015-z

Keywords

Navigation