Skip to main content
Log in

Fixation offset facilitates saccades and manual reaching for single but not multiple target displays

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Turning off a fixation point, typically for 200 ms, before the onset of a peripheral target substantially reduces saccadic reaction times. This facilitatory effect generated by an inserted temporal gap between fixation offset and the target appearance is called the “gap” effect [J Opt Soc Am 57:1030–1033, 1967]. We show that the gap reduces the initial latency of both saccades and manual pointing in single and multiple target displays. Yet, in multiple target displays, the gap increased the movement duration because eye or hand movements were frequently misdirected toward distractors so that the trajectory had to be corrected. Thus, in spite of the shortened latency, the total time for trial completion was not shortened in multiple target displays, whereas it was reduced in single target displays. This selective gap effect for a single target was not restricted to goal-directed motor tasks because perceptual discrimination tasks, where no motor response is required, also demonstrated the gap effect only for single target displays. Our results suggest that the gap may facilitate attentional disengagement, but it does not help target selection in motor and perceptual discrimination tasks, where the allocation of attention to the target is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arai K, McPeek RM, Keller EL (2004) Properties of saccadic responses in monkey when multiple competing visual stimuli are present. J Neurophysiol 91:890–900

    Article  PubMed  Google Scholar 

  • Bekkering H, Pratt J, Abrams RA (1996) The gap effect for eye and hand movements. Percept Psychophys 58(4):628–635

    PubMed  CAS  Google Scholar 

  • Bichot NP, Schall JD (1999) Effects of similarity and history on neural mechanisms of visual selection. Nat Neurosci 2:549–554

    Article  PubMed  CAS  Google Scholar 

  • Bravo MJ, Nakayama K (1992) The role of attention in different visual-search tasks. Percept Psychophys 51:465–472

    PubMed  CAS  Google Scholar 

  • Castiello U (1999) Mechanisms of selection for the control of hand action. Trends Cogn Sci 7:264–271

    Article  Google Scholar 

  • Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA, Linenweber MR, Petersen SE, Raichle ME, Van Essen DC, Shulman GL (1998) A common network of functional areas for attention and eye movements. Neuron 21(4):761–773

    Article  PubMed  CAS  Google Scholar 

  • Deubel H, Schneider WX (1996) Saccade target selection and object recognition: evidence for a common attentional mechanism. Vision Res 36:1827–1837

    Article  PubMed  CAS  Google Scholar 

  • Dorris MC, Munoz DP (1995) A neural correlated for the gap effect on saccadic reaction times in monkey. J Neurophysiol 73:2258–2562

    Google Scholar 

  • Fischer B (1987) The preparation of visually guided saccades. Rev Physiol Biochem Pharmacol 106:1–35

    Article  PubMed  CAS  Google Scholar 

  • Fischer B, Breitmeyer B (1987) Mechanisms of visual attention revealed by saccadic eye movements. Neuropsychologia 25(1A):73–83

    Article  PubMed  CAS  Google Scholar 

  • Fischer B, Ramsperger E (1984) Human express saccades: extremely short reaction times of goal directed eye movements. Exp Brain Res 57(1):191–195

    Article  PubMed  CAS  Google Scholar 

  • Kingstone A, Klein R (1993) Visual offset facilitates saccadic latency: does pre-disengagement of visuo-spatial attention mediate this gap effect? J Exp Psychol Hum Percept Perform 19:1251–1265

    Article  PubMed  CAS  Google Scholar 

  • Kowler E, Anderson E, Dosher B, Blaser E (1995) The role of attention in the programming of saccades. Vision Res 35:1897–1916

    Article  PubMed  CAS  Google Scholar 

  • Mackeben M, Nakayama K (1993) Express attentional shifts. Vision Res 33:85–90

    Article  PubMed  CAS  Google Scholar 

  • Maljkovic V, Nakayama K (1994) Priming of popout: I. Role of features. Mem Cognit 22:657–672

    PubMed  CAS  Google Scholar 

  • Mayfrank L, Mobashery M, Kimming H, Fischer B (1986) The role of fixation and visual attention in the occurrence of express saccades in man. Eur Arch Psychiatry Neural Sci 235:269–275

    Article  CAS  Google Scholar 

  • McPeek RM, Han JH, Keller EL (2003) Competition between saccade goals in the superior colliculus produces saccade curvature. J Neurophysiol 89:2577–2590

    Article  PubMed  Google Scholar 

  • McPeek RM, Keller EL (2001) Short-term priming, concurrent processing, and saccade curvature during a target selection task in the monkey. Vision Res 41(6):785–800

    Article  PubMed  CAS  Google Scholar 

  • McPeek RM, Keller EL (2002) Saccade target selection in the superior colliculus during a visual search task. J Neurophysiol 88:2019–2034

    PubMed  Google Scholar 

  • McPeek RM, Keller EL (2004) Deficits in saccade target selection after inactivation of superior colliculus. Nat Neurosci 7:757–763

    Article  PubMed  CAS  Google Scholar 

  • McPeek RM, Maljkovic V, Nakayama K (1999) Saccades require focal attention and are facilitated by a short-term memory system. Vision Res 39:1555–1566

    Article  PubMed  CAS  Google Scholar 

  • Munoz DP, Wurtz RH (1993) Fixation cells in monkey superior colliculus. I. Characteristics of cell discharge. J Neurophysiol 70:559–575

    PubMed  CAS  Google Scholar 

  • Posner MI (1980) Orienting of attention. Q J Exp Psychol 32:3–25

    PubMed  CAS  Google Scholar 

  • Pratt J, Bekkering H, Leung M (2000) Estimating the components of the gap effect. Exp Brain Res 130(2):258–263

    Article  PubMed  CAS  Google Scholar 

  • Pratt J, Bekkering H, Abrams RA, Adam J (1999) The gap effect for spatially oriented responses. Acta Psychol 102:1–12

    Article  CAS  Google Scholar 

  • Pratt J, Nghiem T (2000) The role of the gap effect in the orienting of attention: evidence for express attentional shifts. Vis Cogn 5:629–644

    Google Scholar 

  • Reuter-Lorenz PA, Oonk H, Barnes L, Hughes HC (1995) Effects of warning signals and fixation point offsets on the latencies of pro- vs. anti- saccades: implications for an interpretation of the gap effect. Exp Brain Res 103:287–293

    Article  PubMed  CAS  Google Scholar 

  • Saslow MG (1967) Effects of components of displacement-step stimuli upon latency for saccadic eye movement. J Opt Soc Am 57:1030–1033

    Article  PubMed  CAS  Google Scholar 

  • Schall JD (2001) Neural basis of deciding, choosing, and acting. Nat Rev Neurosci 2:33–42

    Article  PubMed  CAS  Google Scholar 

  • Schall JD, Thompson KG (1999) Neural selection and control of visually guided eye movements. Annu Rev Neurosci 22:241–259

    Article  PubMed  CAS  Google Scholar 

  • Schiegg A, Deubel H, Schneider WX (2003) Attentional selection during preparation of prehension movements. Vis Cogn 10(4):409–431

    Article  Google Scholar 

  • Schneider WX, Deubel H (2002) Selection-for-perception and selection-for-spatial-motor-action are coupled by visual attention: a review of recent findings and new evidence from stimulus-driven saccade control. In: Prinz W, Hommel B (eds) Attention and performance XIX: common mechanisms in perception and action. Oxford University Press, Oxford

    Google Scholar 

  • Sheliga BM, Riggio L, Craighero L, Rizzolatti G (1995) Spatial attention-determined modifications in saccade trajectories. Neuroreport 6:585–588

    Article  PubMed  CAS  Google Scholar 

  • Song J-H, Nakayama K (in press) Role of focal attention on latencies and trajectories of visually-guided manual pointing. J Vis

  • Tam W, Ono H (1994) Fixation disengagement and eyemovement latency. Percept Psychophys 56:251–260

    PubMed  CAS  Google Scholar 

  • Tipper SP, Lortie C, Baylis GC (1992) Selective reaching: evidence for action-centered attention. J Exp Psychol Hum Percept Perform 18:891–905

    Article  PubMed  CAS  Google Scholar 

  • Weber H, Fischer B (1995) Gap duration and location of attention focus modulate the occurrence of left/right asymmetries in the saccadic reaction times of human subjects. Vision Res 35(7):987–998

    Article  PubMed  CAS  Google Scholar 

  • Werner W (1993) Neurons in the primate superior colliculus are active before and during arm movements to visual targets. Eur J Neurosci 5:335–340

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

JHS is supported by Korea Foundation For Advanced Studies fellowship. We thank Charles Stromeyer III, Yuhong Jiang, Amelia Hunt, and Dr. Richard Abrams for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo-Hyun Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, JH., Nakayama, K. Fixation offset facilitates saccades and manual reaching for single but not multiple target displays. Exp Brain Res 177, 223–232 (2007). https://doi.org/10.1007/s00221-006-0667-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0667-4

Keywords

Navigation