Skip to main content
Log in

Visual oddballs induce prolonged microsaccadic inhibition

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Eyes never stop moving. Even when asked to maintain the eyes at fixation, the oculomotor system produces small and rapid eye movements called microsaccades, at a frequency of about 1.5–2 s−1. The frequency of microsaccades changes when a stimulus is presented in the visual field, showing a stereotyped response pattern consisting of an early inhibition of microsaccades followed by a rebound, before the baseline is reached again. Although this pattern of response has generally been considered as a sort of oculomotor reflex, directional biases in microsaccades have been recently linked to the orienting of spatial attention. In the present study, we show for the first time that regardless of any spatial bias, the pattern of absolute microsaccadic frequency is different for oddball stimuli compared to that elicited by standard stimuli. In a visual-oddball task, the oddball stimuli caused an initial prolonged inhibition of microsaccades, particularly when oddballs had to be explicitly recognized and remembered. The present findings suggest that high-order cognitive processes, other than spatial attention, can influence the frequency of microsaccades. Finally, we also introduce a new method for exploring the visual system response to oddball stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ardekani BA, Choi SJ, Hossein-Zadeh GA, Bernice P, Tanabe JL, Lim KO, Bilder R, Helpern JA, Begleiter H (2002) Functional magnetic resonance imaging of brain activity in the visual oddball task. Brain Res Cogn Brain Res 14:347–356

    Article  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Betta E, Turatto M (2006) Are you ready? I can tell by looking at your microsaccades. Neuroreport 17:1001–1004

    Article  PubMed  Google Scholar 

  • Bridgeman B (1998) Durations of stimuli displayed on video display terminals: (n−1)/f+persistence. Psychol Sci 9:232–233

    Article  Google Scholar 

  • Donchin E, Coles MG (1988) Is the P300 component a manifestation of context updating? Behav Brain Sci 11:347–427

    Google Scholar 

  • Engbert R, Kliegl R (2003) Microsaccades uncover the orientation of covert attention. Vision Res 43:1035–1045

    Article  PubMed  Google Scholar 

  • Engbert R, Mergenthaler K (2006) Microsaccades are triggered by low retinal image slip. Proc Natl Acad Sci USA 103:7192–7197

    Article  PubMed  CAS  Google Scholar 

  • Folk CL, Remington RW, Johnston JC (1992). Involuntary covert orienting is contingent on attentional control settings. J Exp Psychol Hum Percept Perform 18:1030–1044

    Article  PubMed  CAS  Google Scholar 

  • Galfano G, Betta E, Turatto M (2004) Inhibition of return in microsaccades. Exp Brain Res 159:400–404

    Article  PubMed  Google Scholar 

  • Hafed ZM, Clark JJ (2002) Microsaccades as an overt measure of covert attention shifts. Vision Res 42:2533–2545

    Article  PubMed  Google Scholar 

  • Huerta MF, Harting JK (1984) Connectional organization of the superior colliculus. Trends Neurosci 7:286–289

    Article  Google Scholar 

  • Ives HE (1912) On heterocromatic photometry. Philos Mag 24:845–853

    Google Scholar 

  • Kok A (2001) On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology 38:557–577

    Article  PubMed  CAS  Google Scholar 

  • Laubrock J, Engbert R, Kliegl R (2005) Microsaccade dynamics during covert attention. Vision Res 45:721–730

    Article  PubMed  Google Scholar 

  • Lavie N (1995) Perceptual load as a necessary condition for selective attention. J Exp Psychol Hum Percept Perform 21:451–468

    Article  PubMed  CAS  Google Scholar 

  • Leopold DA, Logothetis NK (1998) Microsaccades differentially modulate neural activity in the striate and extrastriate visual cortex. Exp Brain Res 123:341–345

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Conde S, Macknik SL, Hubel DH (2000) Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys. Nat Neurosci 3:251–258

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Conde S, Macknik SL, Hubel DH (2004) The role of fixational eye movements in visual perception. Nat Rev Neurosci 5:229–240

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Conde S, Macknik SL, Troncoso XG, Dyar TA (2006) Microsaccades counteract visual fading during fixation. Neuron 49:297–305

    Article  PubMed  CAS  Google Scholar 

  • Mazza V, Turatto M, Sarlo M (2005) Rare stimuli or rare changes: what really matters for the brain? Neuroreport 16:1061–1064

    Article  PubMed  Google Scholar 

  • McPeek RM, Keller EL (2004) Deficits in saccade target selection after inactivation of superior colliculus. Nat Neurosci 7:757–763

    Article  PubMed  CAS  Google Scholar 

  • Møller F, Laursen ML, Tygesen J, Sjølie AK (2002) Binocular quantification and characterization of microsaccades. Graefes Arch Clin Exp Ophthalmol 240:765–770

    PubMed  Google Scholar 

  • Näätänen R, Gaillard AWK, Mäntysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychol 42:313–329

    Article  Google Scholar 

  • Pazo-Alvarez P, Cadaveira F, Amenedo E (2003) MMN in the visual modality: a review. Biol Psychol 63:199–236

    Article  PubMed  CAS  Google Scholar 

  • Potts GF (2004) An ERP index of task relevance evaluation of visual stimuli. Brain Cogn 56:5–13

    Article  PubMed  Google Scholar 

  • Rolfs M, Engbert R, Kliegl R (2004) Microsaccade orientation supports attentional enhancement opposite a peripheral cue. Psychol Sci 15:705–707

    Article  PubMed  Google Scholar 

  • Rolfs M, Engbert R, Kliegl R (2005) Crossmodal coupling of oculomotor control and spatial attention in vision and audition. Exp Brain Res 166:427–439

    Article  PubMed  Google Scholar 

  • Rolfs M, Laubrock J, Kliegl R (2006) Shortening and prolongation of saccade latencies following microsaccades. Exp Brain Res 169:369–376

    Article  PubMed  Google Scholar 

  • Schall JD (1995) Neural basis of saccade target selection. Rev Neurosci 6:63–85

    PubMed  CAS  Google Scholar 

  • Sparks DL, Nelson JS (1987) Sensory and motor maps in the mammalian superior colliculus. Trends Neurosci 10:312–317

    Article  Google Scholar 

  • Steinman RM, Haddad GM, Skavenski AA, Wyman D (1973) Miniature eye movement. Science 181:810–819

    Article  PubMed  CAS  Google Scholar 

  • Stevens AA, Skudlarski P, Gatenby JC, Gore JC (2000) Event-related fMRI of auditory and visual oddball tasks. Magn Reson Imaging 18:495–502

    Article  PubMed  CAS  Google Scholar 

  • Zuber BL, Stark L, Cook G (1965) Microsaccades and the velocity–amplitude relationship for saccadic eye movements. Science 150:1459–1460

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Turatto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valsecchi, M., Betta, E. & Turatto, M. Visual oddballs induce prolonged microsaccadic inhibition. Exp Brain Res 177, 196–208 (2007). https://doi.org/10.1007/s00221-006-0665-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0665-6

Keywords

Navigation