Skip to main content
Log in

Differential integration of kinaesthetic signals to postural control

  • Research Note
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The purpose of the present experiment was to identify whether non-visual sensory cues involved in the maintenance of balance control could be weighted differently from one subject to another in condition during which kinaesthetic signals, stemming from the ankle proprioceptors and plantar pressure somatosensory sensors, were altered. A large population of blindfolded healthy young university students (n = 140) were asked to sway as little as possible on: (1) a firm support (Firm condition) and (2) an unstable support used to impair the exploitation of the kinematic ankle proprioceptive and plantar pressure somatosensation (Foam condition). Centre of foot pressure (CoP) displacements were recorded using a force platform. Analyses of the surface area, range, and mean velocity of the CoP displacements showed significant negative correlations between the postural sway observed in the Firm condition and the increase in postural sway observed in the Foam condition. In other words, the alteration of ankle proprioception had a greater destabilising effect in subjects exhibiting the smallest CoP displacements when standing in a normal proprioception condition. The present findings suggest that the exploitation of the kinaesthetic relationships to postural control varied from one subject to another, hence evidencing the need to introduce differential approach to assess the general impact of preferential modes of spatial referencing in postural control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bacsi AM, Colebatch JG (2005) Evidence for reflex and perceptual vestibular contributions to postural control. Exp Brain Res 160:22–28

    Article  PubMed  Google Scholar 

  • Bernardin D, Isableu B, Fourcade P, Bardy BG (2005) Differential exploitation of the inertia tensor in multi-joint arm reaching. Exp Brain Res 167:487–495

    Article  PubMed  Google Scholar 

  • Bronstein AM (1986) Suppression of visually evoked postural responses. Exp Brain Res 63:655–658

    Article  PubMed  CAS  Google Scholar 

  • Carver S, Kiemel T, Jeka JJ (2006) Modeling the dynamics of sensory reweighting. Biol Cybern. DOI 10.1007/s00422-006-0069-5

  • Chiari L, Bertani A, Cappello A (2000) Classification of visual strategies in human postural control by stochastic parameters. Hum Mov Sci 19:817–842

    Article  Google Scholar 

  • Collins JJ, De Luca CJ, Pavlik AE, Roy SH, Emley MS (1995) The effects of spaceflight on open-loop and closed-loop postural control mechanisms: human neurovestibular studies on SLS-2. Exp Brain Res 107:145–150

    Article  PubMed  CAS  Google Scholar 

  • Dietz V (1993) Gating of reflexes in ankle muscles during human stance and gait. Prog Brain Res 97:181–188

    PubMed  CAS  Google Scholar 

  • Ehrenfried T, Guerraz M, Thilo KV, Yardley L, Gresty MA (2003) Posture and mental task performance when viewing a moving visual field. Brain Res Cogn Brain Res 17:140–153

    Article  PubMed  Google Scholar 

  • Fitzpatrick R, McCloskey DI (1994) Proprioceptive, visual and vestibular thresholds for the perception of sway during standing in humans. J Physiol (Lond) 478:173–186

    Google Scholar 

  • Guerraz M, Gianna CC, Burchill PM, Gresty MA, Bronstein AM (2001) Effect of visual surrounding motion on body sway in a three-dimensional environment. Percept Psychophys 63:47–58

    PubMed  CAS  Google Scholar 

  • Horak FB, Hlavacka F (2001) Somatosensory loss increases vestibulospinal sensitivity. J Neurophysiol 86:575–585

    PubMed  CAS  Google Scholar 

  • Horak FB, Nashner LM, Diener HC (1990) Postural strategies associated with somatosensory and vestibular loss. Exp Brain Res 82:167–177

    Article  PubMed  CAS  Google Scholar 

  • Horak FB, Shupert CL, Dietz V, Horstmann G (1994) Vestibular and somatosensory contributions to responses to head and body displacements in stance. Exp Brain Res 100:93–106

    Article  PubMed  CAS  Google Scholar 

  • Horak FB, Buchanan J, Creath R, Jeka J (2002) Vestibulospinal control of posture. Adv Exp Med Biol 508:139–145

    PubMed  Google Scholar 

  • Horstmann GA, Dietz V (1990) A basic posture control mechanism: the stabilization of the centre of gravity. Electroencephalogr Clin Neurophysiol 76:165–176

    Article  PubMed  CAS  Google Scholar 

  • Isableu B, Ohlmann T, Cremieux J, Amblard B (1997) Selection of spatial frame of reference and postural control variability. Exp Brain Res 114:584–589

    Article  PubMed  CAS  Google Scholar 

  • Isableu B, Ohlmann T, Cremieux J, Amblard B (2003) Differential approach to strategies of segmental stabilisation in postural control. Exp Brain Res 150:208–221

    PubMed  Google Scholar 

  • Kluzik J, Horak FB, Peterka RJ (2005) Differences in preferred reference frames for postural orientation shown by after-effects of stance on an inclined surface. Exp Brain Res 162:474–489

    Article  PubMed  Google Scholar 

  • Lambrey S, Berthoz A (2003) Combination of conflicting visual and non-visual information for estimating actively performed body turns in virtual reality. Int J Psychophysiol 50:101–115

    Article  PubMed  Google Scholar 

  • Mars F, Vercher JL, Popov K (2005) Dissociation between subjective vertical and subjective body orientation elicited by galvanic vestibular stimulation. Brain Res Bull 65:77–86

    Article  PubMed  Google Scholar 

  • Maurer C, Peterka RJ (2005) A new interpretation of spontaneous sway measures based on a simple model of human postural control. J Neurophysiol 93:189–200

    Article  PubMed  Google Scholar 

  • Maurer C, Mergner T, Bolha B, Hlavacka F (2000) Vestibular, visual, and somatosensory contributions to human control of upright stance. Neurosci Lett 281:99–102

    Article  PubMed  CAS  Google Scholar 

  • Mergner T, Maurer C, Peterka RJ (2003) A multisensory posture control model of human upright stance. Prog Brain Res 142:189–201

    Article  PubMed  CAS  Google Scholar 

  • Mergner T, Schweigart G, Maurer C, Blumle A (2005) Human postural responses to motion of real and virtual visual environments under different support base conditions. Exp Brain Res 167:535–556

    Article  PubMed  CAS  Google Scholar 

  • Ohlmann T (1988) La perception de la verticale. Variabilité interindividuelle dans la dépendance à l’égard des référentiels spatiaux. Thèse pour le Doctorat d’état, Université de Paris VIII

  • Ohlmann T, Marendaz C (1991) Vicarious processes involved in selection/control of frames of reference and spatial aspects of field dependence–independence. In: Wapner S, Demick J (eds) Field dependence–independence: cognitive style across the life span. L.E.A. Publisher, Hillsdale, pp. 105–129

    Google Scholar 

  • Oie KS, Kiemel T, Jeka JJ (2002) Multisensory fusion: simultaneous re-weighting of vision and touch for the control of human posture. Brain Res Cogn Brain Res 14:164–176

    Article  PubMed  Google Scholar 

  • Peterka RJ, Loughlin PJ (2004) Dynamic regulation of sensorimotor integration in human postural control. J Neurophysiol 91:410–423

    Article  PubMed  Google Scholar 

  • Peterka RJ, Gianna-Poulin CC, Zupan LH, Merfeld DM (2004) Origin of orientation-dependent asymmetries in vestibulo-ocular reflexes evoked by caloric stimulation. J Neurophysiol 92:2333–2345

    Article  PubMed  Google Scholar 

  • Reuchlin M (1978) Processus vicariants et différences individuelles. J Psychol 2:133–145

    Google Scholar 

  • Roll JP, Roll R (1988) From eye to foot: a proprioceptive chain involved in postural control. In: Amblard B, Berthoz A, Clarac F (eds) Posture and gait: development, adaptation and modulation. Elsevier (Biomedical Division), Amsterdam, pp. 155–164

    Google Scholar 

  • Roll JP, Vedel JP (1982) Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography. Exp Brain Res 47:177–190

    Article  PubMed  CAS  Google Scholar 

  • Tardy-Gervet MF, Severac-Cauquil A (1998) Effect of galvanic vestibular stimulation on perception of subjective vertical in standing humans. Percept Mot Skills 86:1155–1161

    PubMed  CAS  Google Scholar 

  • Vuillerme N, Danion F, Marin L, Boyadjian A, Prieur JM, Weise I, Nougier V (2001a) The effect of expertise in gymnastics on postural control. Neurosci Lett 303:83–86

    Article  CAS  Google Scholar 

  • Vuillerme N, Teasdale N, Nougier V (2001b) The effect of expertise in gymnastics on proprioceptive sensory integration in human subjects. Neurosci Lett 311:73–76

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank subject volunteers and the anonymous reviewers for helpful comments and suggestions. Special thanks also are extended to Anne Noname for various contributions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brice Isableu or Nicolas Vuillerme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isableu, B., Vuillerme, N. Differential integration of kinaesthetic signals to postural control. Exp Brain Res 174, 763–768 (2006). https://doi.org/10.1007/s00221-006-0630-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0630-4

Keywords

Navigation