Skip to main content
Log in

Multisensory information for postural control: sway-referencing gain shapes center of pressure variability and temporal dynamics

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The authors investigated the multisensory control of posture by altering sensory information across the visual and somatosensory systems. The support surface and visual surround were sway-referenced to anterior/posterior center of mass sway and the gain between postural sway and degree of sway referencing was manipulated (gain settings were 0.2, 1.0, and 1.8). These alterations in the sensory environment lead to observed changes in the temporal structure of the center of pressure (COP) trajectories. COP path length increased across gain settings while COP coefficient of variation decreased. The COP became increasingly more deterministic across more challenging sensory organization test (SOT) conditions and with increasing gain, and more nonstationary across more challenging SOT conditions and when the support surface was sway-referenced using a 1.8 gain setting. These findings indicate that changes in the responsiveness of the support surface and/or visual surround within each of the sway-referenced SOT conditions had functional consequences for the control of posture as evidenced by the variations in postural sway dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Benzel CK, Dzendolet E (1968) Power spectral density analysis of the standing sway of males. Percept Psychophys 4:285–288

    Google Scholar 

  • Carlton LG, Newell KM (1993) Force variability and characteristics of force production. In: Newell KM, Corcos D (eds) Variability and motor control. Human Kinetics, Champaign, pp 15–36

    Google Scholar 

  • Carroll JP, Freedman W (1993) Nonstationarity properties of postural sway. J Biomech 26:409–416

    Article  PubMed  CAS  Google Scholar 

  • Collins JJ, De Luca CJ (1993) Open-loop and closed-loop control of posture: a random-walk analysis of center-of-pressure trajectories. Exp Brain Res 95:308–318

    Article  PubMed  CAS  Google Scholar 

  • Collins JJ, De Luca CJ (1995) The effects of visual input on open-loop and closed-loop postural control mechanisms. Exp Brain Res 10:151–163

    Google Scholar 

  • Corna S, Tarantola J, Nardone A, Giordano A, Schieppati M (1999) Standing on a continuously moving platform: is body inertia counteracted or exploited? Exp Brain Res 124:331–341

    Article  PubMed  CAS  Google Scholar 

  • DiFabio RP, Anderson JH (1993) Effect of sway-referenced visual and somatosensory inputs on human head movement and postural sway patterns during stance. J Vest Res 3:409–417

    CAS  Google Scholar 

  • DiFabio RP, Emasithi A, Paul S (1998) Validity of visual stabilization conditions used with computerized dynamic platform posturography. Aca Otolaryngol (Stockh) 118:449–454

    Article  CAS  Google Scholar 

  • Dijkstra TMH (2000) A gentle introduction to the dynamic set-point model of human postural control during perturbed stance. Hum Mov Sci 19:567–595

    Article  Google Scholar 

  • Duarte M, Zatsiorsky VM (2001) Long-range correlations in human standing. Phys Lett A 283:124–128

    Article  CAS  Google Scholar 

  • Horak FB, Macpherson JM (1996) Postural orientation and equilibrium. In: Shepard J, Rowell L (eds) Handbook of physiology. Oxford University Press, New York, pp 255–292

    Google Scholar 

  • Horak FB, Nashner LM, Diener HC (1990) Postural strategies associated with somatosensory and vestibular loss. Exp Brain Res 82:167–177

    Article  PubMed  CAS  Google Scholar 

  • Jeka JJ, Oie KS, Kiemel T (2000) Multisensory information for human postural control: integrating touch and vision. Exp Brain Res 134:107–125

    Article  PubMed  CAS  Google Scholar 

  • Jeka JJ, Kiemel T, Creath R, Horak F, Peterka RJ (2004) Controlling human upright posture: velocity information is more accurate than position or acceleration. J Neurophysiol 92:2368–2379

    Article  PubMed  Google Scholar 

  • Kiemel T, Oie JS, Jeka JJ (2002) Multisensory fusion and the stochastic structure of postural sway. Biol Cybern 87:262–277

    Article  PubMed  Google Scholar 

  • Ko YG, Challis JH, Newell KM (2001) Postural coordination patterns as a function of dynamics of the support surface. Hum Mov Sci 20:737–764

    Article  PubMed  CAS  Google Scholar 

  • Lakie M, Caplan N, Loram ID (2003) Human balancing of an inverted pendulum with a compliant linkage: neural control by anticipatory intermittent bias. J Physiol 551:357–370

    Article  PubMed  CAS  Google Scholar 

  • Loram ID, Lakie M (2002) Direct measurement of human ankle stiffness during quiet standing: the intrinsic mechanical stiffness is insufficient for stability. J Physiol 545:1041–1053

    Article  PubMed  CAS  Google Scholar 

  • Loram ID, Maganaris CN, Lakie M (2005) Human postural sway results from frequent, ballistic bias impulses by soleus and gastrocnemius. J Physiol 564:295–311

    Article  PubMed  CAS  Google Scholar 

  • McClenaghan BA, Williams HG, Dickerson J, Dowda M, Thombs L, Eleazer P (1996) Spectral characteristics of aging postural control. Gait Posture 4:112–121

    Article  Google Scholar 

  • McCollum G, Shupert CL, Nashner LM (1996) Organizing sensory information for postural control in altered sensory environments. J Theor Biol 180:257–270

    Article  PubMed  CAS  Google Scholar 

  • Morasso PG, Sanguineti (2002) Ankle muscle stiffness alone cannot stabilize balance during quiet standing. J Neurophys 88:2157–2162

    Google Scholar 

  • Nashner LM (1976) Adapting reflexes controlling human posture. Exp Brain Res 26:59–72

    Article  PubMed  CAS  Google Scholar 

  • Nashner LM (1993) Practical biomechanics and physiology of balance. In: Jacobson GP, Newman CW, Kartush JK (eds) Handbook of balance function testing. Mosby Year Book, Inc, St. Louis, pp 261–279

    Google Scholar 

  • Newell KM, van Emmerik REA, Lee D, Sprague RL (1993) On postural stability and variability. Gait Posture 4:225–230

    Article  Google Scholar 

  • Newell KM, Slifkin AB (1998) The nature of movement variability. In: Piek JP (ed) Motor behavior and human skill: a multidisciplinary approach. Human Kinetics, Champaign, pp 143–160

    Google Scholar 

  • Newell KM, Slobounov SM, Slobounov ES, Molenaar PCM (1997) Stochastic processes in postural center-of-pressure profiles. Exp Brain Res 113:158–164

    Article  PubMed  CAS  Google Scholar 

  • Oie KS, Kiemel T, Jeka JJ (2001) Human multisensory fusion of vision and touch: detecting non-linearity with small changes in the sensory environment. Neurosci Lett 315:113–116

    Article  PubMed  CAS  Google Scholar 

  • Oie KS, Kiemel T, Jeka JJ (2002) Multisensory fusion: simultaneous re-weighting of vision and touch for the control of human posture. Cogn Brain Res 14:164–176

    Article  Google Scholar 

  • Pellecchia GL, Shockley K (2005) Application of recurrence quantification analysis: influence of cognitive activity on postural fluctuations. In: Riley MA, Van Orden G (eds) Tutorials in contemporary nonlinear methods for the behavioral sciences. Digital publication retrieved from http://www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.jsp

  • Peterka RJ (2000) Postural control model interpretation of stabilogram diffusion analysis. Biol Cybern 82:335–343

    Article  PubMed  CAS  Google Scholar 

  • Peterka RJ (2002) Sensorimotor integration in human postural control. J Neurophysiol 88:1097–1118

    PubMed  CAS  Google Scholar 

  • Peterka RJ, Black FO (1990) Age-related changes in human posture control: sensory organization tests. J Vestib Res 1:73–85

    PubMed  Google Scholar 

  • Peterka RJ, Loughlin PJ (2004) Dynamic regulation of sensorimotor integration in human postural control. J Neurophysiol 91:410–423

    Article  PubMed  Google Scholar 

  • Riccio GE (1993) Information in movement variability about the qualitative dynamics of posture and orientation. In: Newell KM, Corcos D (eds) Variability and motor control. Human Kinetics, Champaign, pp 317–357

    Google Scholar 

  • Riley MA (2001) The temporal structure of spontaneous postural sway. In: van der Burg JCE, Fong BF, Hijl MIJ, Huys R, Pijnappels M, Post AA (eds) Balance at all times: proceedings of the 5th symposium of the Institute for Fundamental and Clinical Human Movement Sciences. Digital Printing Partners, Utrecht, pp 94–109

    Google Scholar 

  • Riley MA, Balasubramaniam R, Mitra S, Turvey MT (1998) Visual influences on center of pressure dynamics in upright posture. Ecol Psychol 10: 65–91

    Article  Google Scholar 

  • Riley MA, Balasubramaniam R, Turvey MT (1999) Recurrence quantification analysis of postural fluctuations. Gait Posture 9:65–78

    Article  PubMed  CAS  Google Scholar 

  • Riley MA, Mitra S, Stoffregen TA, Turvey MT (1997) Influences of body lean and vision on unperturbed postural sway. Motor Control 1:229–246

    Google Scholar 

  • Riley MA, Baker AA, Schmit JM, Weaver EE (2005) Effects of visual and auditory short-term memory tasks on the spatiotemporal dynamics and variability of postural sway. J Motor Behav 37:311–324

    Article  CAS  Google Scholar 

  • Riley MA, Turvey MT (2002) Variability and determinism in motor behavior. J Motor Behav 34:99–125

    Article  Google Scholar 

  • Riley MA, Clark S (2003) Recurrence analysis of human postural sway during the sensory organization test. Neurosci Lett 342:45–48

    Article  PubMed  CAS  Google Scholar 

  • Soames RW, Atha J (1982) The spectral characteristics of postural sway behaviour. Eur J Appl Psychol 49:169–177

    CAS  Google Scholar 

  • Speers RA, Shepard NT, Kuo AD (1999) EquiTest modification with shank and hip angle measurements: differences with age among normal subjects. J Vest Res 9:435–444

    CAS  Google Scholar 

  • Stoffregen TA, Riccio GE (1988) An ecological theory of orientation and the vestibular system. Pscyhol Rev 95:3–14

    Article  CAS  Google Scholar 

  • Takens F (1981) Detecting strange attractors in turbulence. In: Rand D, Young LS (eds) Dynamical systems and turbulence. Springer, Berlin Heidelberg New York, p 366

    Google Scholar 

  • van Emmerik REA, van Wegen EEH (2000) On variability and stability in human movement. J Appl Biomech 16:394–406

    Google Scholar 

  • van Emmerik REA, van Wegen EEH (2002) On the functional aspects of variability in postural control. Exerc Sport Sci Rev 30:177–183

    Article  PubMed  Google Scholar 

  • van Wegen EEH, van Emmerik REA, Riccio GE (2002) Postural orientation: age-related changes in variability and time-to-boundary. Hum Mov Sci 21:61–84

    Article  PubMed  Google Scholar 

  • Webber CL Jr, Zbilut JP (1994) Dynamical assessment of physiological systems and states using recurrence plot strategies. J Appl Physiol 76:965–973

    PubMed  Google Scholar 

  • Webber CL Jr, Zbilut JP (1996) Assessing deterministic structures in physiological systems using recurrence plot strategies. In: Khoo MCK (ed) Bioengineering approaches to pulmonary physiology and medicine. Plenum, New York, pp 137–148

    Chapter  Google Scholar 

  • Webber CL Jr, Zbilut JP (2005) Recurrence quantification analysis of nonlinear dynamical systems. In: Riley MA, Van Orden G (eds) Tutorials in contemporary nonlinear methods for the behavioral sciences. Digital publication retrieved from http://www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.jsp

  • Winter DA (2005) Biomechanics and motor control of human movement, 3rd edn. Wiley, New York

    Google Scholar 

  • Winter DA, Patla AE, Frank JS (1990) Assessment of balance control in humans. Med Prog Tech 16:31–51

    CAS  Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 265:1880–1882

    Article  Google Scholar 

Download references

Acknowledgements

M. A. Riley was supported by award #W81XWH-04-1-0306 from the United States Army Medical Research Acquisition Activity and by National Science Foundation award CMS-0432992. We wish to thank Lew Nashner for his helpful discussions about the SOT gain settings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Clark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, S., Riley, M.A. Multisensory information for postural control: sway-referencing gain shapes center of pressure variability and temporal dynamics. Exp Brain Res 176, 299–310 (2007). https://doi.org/10.1007/s00221-006-0620-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0620-6

Keywords

Navigation