Skip to main content
Log in

Kinesthetic, but not visual, motor imagery modulates corticomotor excitability

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The hypothesis that motor imagery and actual movement involve overlapping neural structures in the central nervous system is supported by multiple lines of evidence. The aim of this study was to examine the modulation of corticomotor excitability during two types of strategies for motor imagery: Kinesthetic Motor Imagery (KMI) and Visual Motor Imagery (VMI) in a phasic thumb movement task. Transcranial magnetic stimulation (TMS) was applied over the contralateral motor cortex (M1) to elicit motor evoked potentials (MEPs) in the dominant abductor pollicis brevis (APB) and abductor digiti minimi (ADM). In a separate experiment, transcutaneous electrical stimuli were delivered to the median nerve at the dominant wrist, to elicit F-waves from APB. Imagined task performance was paced with a 1 Hz auditory metronome, and stimuli were delivered either 50 ms before (ON phase), or 450 ms after (OFF phase), the metronome beeps. Recordings were also made during two control conditions: Rest, and a Visual Static Imagery (VSI) condition. Significant MEP amplitude facilitation occurred only in APB, and only during the ON phase of KMI. F-wave persistence and amplitude were unaffected by imagery. These results demonstrate that kinesthetic, but not visual, motor imagery modulates corticomotor excitability, primarily at the supraspinal level. These findings have implications for the definition of motor imagery, and for its therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barreca S, Wolf SL, Fasoli S, Bohannon R (2003) Treatment interventions for the paretic upper limb of stroke survivors: a critical review. Neurorehabil Neural Repair 17:220–226

    Article  PubMed  Google Scholar 

  • Beisteiner R, Hollinger P, Lindinger G, Lang W, Berthoz A (1995) Mental representations of movements. Brain potentials associated with imagination of hand movements. Electroencephalogr Clin Neurophysiol 96:183–193

    Article  PubMed  CAS  Google Scholar 

  • Bonnet M, Decety J, Jeannerod M, Requin J (1997) Mental simulation of an action modulates the excitability of spinal reflex pathways in man. Cognitive Brain Research 5:221–228

    Article  PubMed  CAS  Google Scholar 

  • Caldara R, Deiber MP, Andrey C, Michel CM, Thut G, Hauert C-A (2004) Actual and mental motor preparation and execution: a spatiotemporal ERP study. Exp Brain Res 159:389–399

    Article  PubMed  Google Scholar 

  • Clark S, Tremblay F, Ste-Marie D (2003) Differential modulation of corticospinal excitability during observation, mental imagery and imitation of hand actions. Neuropsychologia 42:105–112

    Article  Google Scholar 

  • Decety J, Perani D, Jeannerod M, Bettinardi V, Tadary B, Woods R, Mazziotta JC, Fazio F (1994) Mapping motor representations with positron emission tomography. Nature 371:600–602

    Article  PubMed  CAS  Google Scholar 

  • Dechent P, Merboldt K-D, Frahm J (2004) Is the human primary motor cortex involved in motor imagery? Cognitive Brain Res 19:138–144

    Article  Google Scholar 

  • Deiber MP, Ibanez V, Honda M, Sadato N, Raman R, Hallett M (1998) Cerebral processes related to visuomotor imagery and generation of simple finger movements studied with positron emission tomography. NeuroImage 7:73–85

    Article  PubMed  CAS  Google Scholar 

  • Driskell JE, Copper C, Moran A (1994) Does mental practice enhance performance? J Appl Psychol 79:481–492

    Article  Google Scholar 

  • Ehrsson HH, Geyer S, Naito E (2003) Imagery of voluntary movement of fingers, toes, and tongue activates corresponding body-part-specific motor representations. J Neurophysiol 90:3304–3316

    Article  PubMed  Google Scholar 

  • Facchini S, Muellbacher W, Battaglia F, Boroojerdi B, Hallett M (2002) Focal enhancement of motor cortex excitability during motor imagery: a transcranial magnetic stimulation study. Acta Neurol Scand 105:146–151

    Article  PubMed  CAS  Google Scholar 

  • Fadiga L, Buccino G, Craighero L, Fogassi L, Gallese V, Pavesi G (1999) Corticospinal excitability is specifically modulated by motor imagery: a magnetic stimulation study. Neuropsychologia 37:147–158

    Article  PubMed  CAS  Google Scholar 

  • Feltz DL, Landers DM (1983) The effects of mental practice on motor skill learning and performance. J Sport Psychol 5:25–57

    Google Scholar 

  • Fery YA (2003) Differentiating visual and kinesthetic imagery in mental practice. Can J Exp Psychol 57:1–10

    PubMed  Google Scholar 

  • Frith C, Dolan RJ (1997) Brain mechanisms associated with top-down processes in perception. Phil Trans R S London Ser. B: Biol Sci 352:1221–1230

    Article  CAS  Google Scholar 

  • Gerardin E, Sirigu A, Lehericy S, Poline JB, Gaymard B, Marsault C, Agid Y, Le Bihan D (2000) Partially overlapping neural networks for real and imagined hand movements. Cereb Cortex 10:1093–1104

    Article  PubMed  CAS  Google Scholar 

  • Hall CR, Martin KA (1997) Measuring movement imagery abilities: a revision of the movement imagery questionnaire. J Mental Imagery 21:143–154

    Google Scholar 

  • Hall C, Pongrac J, Buckholz E (1985) The measurement of imagery ability. Human Movement Sci 4:107–118

    Article  Google Scholar 

  • Hanakawa T, Immisch I, Toma K, Dimyan M, van Gelderen P, Hallett M (2003) Functional properties of brain areas associated with motor execution and imagery. J Neurophysiol 89:989–1002

    Article  PubMed  Google Scholar 

  • Hashimoto R, Rothwell JC (1999) Dynamic changes in corticospinal excitability during motor imagery. Exp Brain Res 125:75–81

    Article  PubMed  CAS  Google Scholar 

  • Jackson PL, Lafleur MF, Malouin F, Richards CL, Doyon J (2003) Functional cerebral reorganization following motor sequence learning through mental practice with motor imagery. NeuroImage 20:1171–1180

    Article  PubMed  Google Scholar 

  • Jancke L, Kleinschmidt A, Mirzazade S, Shah NJ, Freund HJ (2001) The role of the inferior parietal cortex in linking the tactile perception and manual construction of object shapes. Cereb Cortex 11:114–121

    Article  PubMed  CAS  Google Scholar 

  • Kasai T, Kawai S, Kawanishi M, Yahagi S (1997) Evidence for facilitation of motor evoked potentials (MEPs) induced by motor imagery. Brain Research 744:147–150

    Article  PubMed  CAS  Google Scholar 

  • Kiers L, Fernando B, Tomkins D (1997) Facilitatory effect of thinking about movement on magnetic motor-evoked potentials. Electroencephal Clin Neurophysiol 105:262–268

    Article  CAS  Google Scholar 

  • Kuhtz-Buschbeck JP, Mahnkopf C, Holzknecht C, Siebner H, Ulmer S, Jansen O (2003) Effector-independent representations of simple and complex imagined finger movements: a combined fMRI and TMS study. Euro J Neurosci 18:3375–3387

    Article  CAS  Google Scholar 

  • Li S, Kamper DG, Stevens JA, Rymer WZ (2004) The effect of motor imagery on spinal segmental excitability. J Neurosci 24:9674–9680

    Article  PubMed  CAS  Google Scholar 

  • Lotze M, Montoya P, Erb M, Hulsmann E, Flor H, Klose U, Birbaumer N, Grodd W (1999) Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J Cog Neurosci 11:491–501

    Article  CAS  Google Scholar 

  • Lotze M, Scheler G, Tan HR, Braun C, Birbaumer N (2003) The musician’s brain: functional imaging of amateurs and professionals during performance and imagery. Neuroimage 20:1817–1829

    Article  PubMed  CAS  Google Scholar 

  • Malouin F, Belleville S, Richards CL, Desrosiers J, Doyon J (2004) Working memory and mental practice outcomes after stroke. Arch Phys Med Rehabil 85:177–183

    Article  PubMed  Google Scholar 

  • Mattia D, Mattiocco M, Timperi A, Salinari S, Marciani MG, Babiloni F, Febo C (2004) Estimation of cortical activity from noninvasive high-resolution EEG recordings. Int Cong Ser 1270:245–248

    Article  Google Scholar 

  • Meister IG, Krings T, Foltys H, Boroojerdi B, Muller M, Topper R, Thron A (2004) Playing piano in the mind – an fMRI study on music imagery and performance in pianists. Brain Res Cogn Brain Res 19:219–228

    Article  PubMed  CAS  Google Scholar 

  • Miall RC, Wolpert DM (1996) Forward models for physiological motor control. Neural Netw 9:1265–1279

    Article  PubMed  Google Scholar 

  • Nair DG, Purcott KL, Fuchs A, Steinberg F, Kelso JA (2003) Cortical and cerebellar activity of the human brain during imagined and executed unimanual and bimanual action sequences: a functional MRI study. Brain Res Cogn Brain Res 15:250–260

    Article  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Page SJ, Levine P, Sisto S, Johnston MV (2001) A randomized efficacy and feasibility study of imagery in acute stroke. Clin Rehabil 15:233–240

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Leone A, Dang N, Cohen LG, Brasil-Neto JP, Cammarota A, Hallett M (1995) Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophysiol 74:1037–1045

    PubMed  CAS  Google Scholar 

  • Pfurtscheller G, Neuper C (1997) Motor imagery activates primary sensorimotor area in humans. Neurosci Lett 239:65–68

    Article  PubMed  CAS  Google Scholar 

  • Porro CA, Francescato MP, Cettolo V, Diamond ME, Baraldi P, Zuiani C, Bazzocchi M, di Prampero PE (1996) Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. J Neurosci 16:7688–7698

    PubMed  CAS  Google Scholar 

  • Porro CA, Cettolo V, Francescato MP, Baraldi P (2000) Ipsilateral involvement of primary motor cortex during motor imagery. Euro J Neurosci 12:3059–3063

    Article  CAS  Google Scholar 

  • Romero DH, Lacourse MG, Lawrence KE, Schandler S, Cohen MJ (2000) Event-related potentials as a function of movement parameter variations during motor imagery and isometric action. Behav Brain Res 117:83–96

    Article  PubMed  CAS  Google Scholar 

  • Ross JS, Tkach J, Ruggieri PM, Lieber M, Lapresto E (2003) The mind’s eye: functional MR imaging evaluation of golf motor imagery. AJNR Am J Neuroradiol 24:1036–1044

    PubMed  Google Scholar 

  • Rossi S, Pasqualetti P, Tecchio F, Pauri F, Rossini PM (1998) Corticospinal excitability modulation during mental simulation of wrist movements in human subjects. Neurosci Lett 243:147–151

    Article  PubMed  CAS  Google Scholar 

  • Rossini PM, Rossini S, Pasqualetti P, Tecchio F (1999) Corticospinal excitability modulation to hand muscles during movement imagery. Cereb Cortex 9:161–167

    Article  PubMed  CAS  Google Scholar 

  • Roth M, Decety J, Raybaudi M, Massarelli R, Delon-Martin C, Segebarth C, Morand S, Gemignani A, Decorps M, Jeannerod M (1996) Possible involvement of primary motor cortex in mentally simulated movement: a functional magnetic resonance imaging study. Neuroreport 7:1280–1284

    Article  PubMed  CAS  Google Scholar 

  • Ruby P, Decety J (2001) Effect of subjective perspective taking during simulation of action: a PET investigation of agency. Nat Neurosci 4:546–550

    PubMed  CAS  Google Scholar 

  • Schnitzler A, Salenius S, Salmelin R, Jousmaki V, Hari R (1997) Involvement of primary motor cortex in motor imagery: a neuromagnetic study. Neuroimage 6:201–208

    Article  PubMed  CAS  Google Scholar 

  • Sethi RK, Thompson LL (1989) The Electromyographer’s Handbook. Little Brown, Boston, MA

    Google Scholar 

  • Solodkin A, Hlustik P, Chen EE, Small SL (2004) Fine modulation in network activation during motor execution and motor imagery. Cereb Cortex 14:1246–1255

    Article  PubMed  Google Scholar 

  • Spiegler A, Graimann B, Pfurtscheller G (2004) Phase coupling between different motor areas during tongue-movement imagery. Neurosci Lett 369:50–54

    Article  PubMed  CAS  Google Scholar 

  • Stephan KM, Fink GR, Passingham RE, Silbersweig D, Ceballos-Baumann AO, Frith CD, Frackowiak RSJ (1995) Functional anatomy of the mental representation of upper extremity movements in healthy subjects. J Neurophysiol 73:373–386

    PubMed  CAS  Google Scholar 

  • Stevens JA, Stoykov ME (2003) Using motor imagery in the rehabilitation of hemiparesis. Arch Phys Med Rehabil 84:1090–1092

    Article  PubMed  Google Scholar 

  • Stinear CM, Byblow WD (2003) Motor imagery of phasic thumb abduction temporally and spatially modulates corticospinal excitability. Clin Neurophysiol 114:909–914

    Article  PubMed  Google Scholar 

  • Stinear CM, Byblow WD (2004) Modulation of corticospinal excitability and intracortical inhibition during motor imagery is task-dependent. Exp Brain Res 157:351–358

    Article  PubMed  Google Scholar 

  • Yahagi S, Kasai T (1998) Facilitation of motor evoked potentials (MEPs) in first dorsal interosseous (FDI) muscle is dependent on different motor images. Electroencephal Clin Neurophysiol 109:409–417

    Article  CAS  Google Scholar 

  • Yahagi S, Shimura K, Kasai T (1996) An increase in cortical excitability with no change in spinal excitability during motor imagery. Percep Motor Skills 83:288–290

    CAS  Google Scholar 

  • Yoo E, Park E, Chung B (2001) Mental practice effect on line-tracing accuracy in persons with hemiparetic stroke: a preliminary study. Arch Phys Med Rehabil 82:1213–1218

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Craig Hall for helpful comments related to the MIQ-R, and Cheryl Murphy and Melanie Fleming for their assistance in data collection and analysis. Support for the present study was provided through grants from the Research Council of K.U. Leuven, Belgium (Contract No. OT/03/61), the Research Programme of the Fund for Scientific Research Flanders (FWO-Vlaanderen# G.0460.04 and G.0245.05), and the Auckland Medical Research Foundation (81475).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cathy M. Stinear.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stinear, C.M., Byblow, W.D., Steyvers, M. et al. Kinesthetic, but not visual, motor imagery modulates corticomotor excitability. Exp Brain Res 168, 157–164 (2006). https://doi.org/10.1007/s00221-005-0078-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0078-y

Keywords

Navigation