Skip to main content
Log in

EEG correlates of coordinate processing during intermanual transfer

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Goal-directed movements require mapping of target information to patterns of muscular activation. While visually acquired information about targets is initially encoded in extrinsic, object-centered coordinates, muscular activation patterns are encoded in intrinsic, body-related coordinates. Intermanual transfer of movements previously learned with one hand is accomplished by the recall of unmodified extrinsic coordinates if the task is performed in original orientation. Intrinsic coordinates are retrieved in case of mirror-reversed orientation. In contrast, learned extrinsic coordinates are modified during the mirror movement and intrinsic coordinates during the originally oriented task. To investigate the neural processes of recall and modification, electroencephalogram (EEG) recording was employed during the performance of a figure drawing task previously trained with the right hand in humans. The figure was reproduced with the right hand (Learned-task) and with the left hand in original (Normal-task) and mirror orientations (Mirror-task). Prior to movement onset, beta-power and alpha- and beta-coherence decreased during the Normal-task as compared with the Learned-task. Negative amplitudes over fronto-central sites during the Normal-task exceeded amplitudes manifested during the Learned-task. In comparison to the Learned-task, coherences between fronto-parietal sites increased during the Mirror-task. Results indicate that intrinsic coordinates are processed during the pre-movement period. During the Normal-task, modification of intrinsic coordinates was revealed by cerebral activation. Decreased coherences appeared to reflect suppressed inter-regional information flow associated with utilization of intrinsic coordinates. During the Mirror-task, modification of extrinsic coordinates induced activation of cortical networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3a–c
Fig. 4a, b
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen RA, Snyder LH, Li CS, Stricanne B (1993) Coordinate transformations in the representation of spatial information. Curr Opin Neurobiol 3:171–176

    Article  CAS  PubMed  Google Scholar 

  • Andres FG, Mima T, Schulman AE, Dichgans, J, Hallett M, Gerloff C (1999) Functional coupling of human cortical sensorimotor areas during bimanual skill acquisition. Brain 122:855–870

    Article  PubMed  Google Scholar 

  • Andrew C, Pfurtscheller G (1996) Event-related coherence as a tool for studying dynamic interaction of brain regions. Electroencephalogr Clin Neurophysiol 98:144–148

    Article  CAS  PubMed  Google Scholar 

  • Atkeson CG (1989) Learning arm kinematics and dynamics. Annu Rev Neurosci 3:171–176

    Google Scholar 

  • Bötzel K, Plendl H, Paulus W, Scherg M (1993) Bereitschaftspotential: is there a contribution of the supplementary motor area? Electroencephalogr Clin Neurophysiol 89:187–196

    Google Scholar 

  • Bullock TH (1992) Introduction to induced rhythms: a widespread heterogeneous call of oscillations. In: Basar E, Bullock TH (eds) Induced rhythms of the brain. Birkhauser, Boston, pp 1–26

  • Buneo CA, Jarvis MR, Batista AP, Andersen RA (2002) Direct visuomotor transformation for reaching. Nature 416:632–636

    Article  CAS  PubMed  Google Scholar 

  • Buxbaum LJ, Coslett, HB, Schall RR, McNally B, Goldberg G (1994) Hemispatial facors in mirror writing. Neuropsychologia 37:1317–1421

    Google Scholar 

  • Chan JL, Ross ED (1988) Left-handed mirror writing following right anterior cerebral artery infarction: evidence for nonmirror transformation of motor programs by the right supplementary motor area. J Neurology 38:59–62

    CAS  Google Scholar 

  • Classen J, Gerloff C, Honda M, Hallett M (1998) Integrative visuomotor behavior is associated with interregionally coherence oscillations in the human brain. J Neurophysiol 79:1567–1573

    CAS  Google Scholar 

  • Deiber, MP, Wise SP, Honda M, Catalan MJ, Grafman J, Hallett (1997) Frontal and parietal networks for conditional motor learning: a positron emission tomography study. J Neurophysiol 78:977–991

    CAS  PubMed  Google Scholar 

  • Fettaposta F, Amabile G, Cordischi MV, Di Venanzio D, Foti A, Pierelli F, D’Alessio C, Pigozzi F, Parisi A, Morrocutti C (1996) Long-term practice effects on a new skilled motor learning: an electrophysiological study. Electoencephalogr Clin Neurophysiol 99:495–507

    Google Scholar 

  • Flanagan JR, Rao AK (1995) Trajectory adaptation to a non-linear visuomotor transformation: evidence of motion planning in visually perceived space. J Neurophysiol 74:2175–2178

    Google Scholar 

  • Gerloff C, Toro C, Uenishi N, Cohen LG, Leocani L, Hallett M (1997) Steady-state movement-related cortical potentials: a new approach to assessing cortical activity associated with fast repetitive finger movements. Electroencephalogr Clin Neurophysiol 102:106–113

    Article  CAS  PubMed  Google Scholar 

  • Grafton ST, Maziotta JC, Presty S, Friston KJ, Frackowiak RSJ, Phelps ME (1992) Functional anatomy of human procedural learning determined with regional cerebral blood flow and PET. J Neurosci 12:2542–2538

    CAS  PubMed  Google Scholar 

  • Grafton ST, Hazeltine E, Ivry IB (2002) Motor sequence learning with the nondominant hand. Exp Brain Res 146:369–378

    Article  PubMed  Google Scholar 

  • Graziano MS, Gross CG (1998) Spatial maps for the control of movement. Curr Opin Neurobiol 8:195–201

    Article  CAS  PubMed  Google Scholar 

  • Haaland KY, Harrington DL (1996) Hemispheric asymmetry of movement. Curr Opin Neurobiol 6:796–800

    Article  CAS  PubMed  Google Scholar 

  • Halsband U (1992) Left hemisphere preponderance in trajectorial learning. Neuroreport 3:397–400

    CAS  PubMed  Google Scholar 

  • Imamizu H, Kawato M (1998) Adaptive internal models of kinematics involved in learning an aiming task. J Exp Psychol Hum Percept Perform 24:812–829

    Article  CAS  PubMed  Google Scholar 

  • Jasper HH (1958) The ten-twenty electrode system of the international federation of electroencephalography and clinical neurophysiology. Electroencephalogr Clin Neurophysiol 183:321–375

    Google Scholar 

  • Kawato M, Isobe M, Maeda Y, Suzuki R (1988) Coordinates transformation and learning control for visually guided voluntary movement with iteration: a Newton-like method in a function space. Biol Cybern 59:161–177

    CAS  PubMed  Google Scholar 

  • Kim SG, Ashe J, Hendrichs K, Ellermann JM, Merkle H, Urgurbil K, Georgopoulos A (1993) Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science 261:615–617

    CAS  PubMed  Google Scholar 

  • Kornhuber HH, Deecke L (1965) Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und Reafferente Potentiale. Pflügers Arch Ges Physiol 284:1–17

    Google Scholar 

  • Kristeva R, Cheyne D, Lang W, Lindinger G, Deecke L (1990) Movement-related potentials with different inertial loads. Electroencephalogr Clin Neurophysiol 75:410–418

    Article  CAS  PubMed  Google Scholar 

  • Kurata K, Hoshi E (2002) Movement-related neuronal activity reflecting the transformation of coordinates in the ventral premotor cortex of monkeys. J Neurophysiol 88:3118–3132

    PubMed  Google Scholar 

  • Lacquanati F, Guignon E, Bianchi L, Ferraina S, Caminiti R (1995) Representing spatial information for limb movement: role of area 5 in the monkey. Cereb Cortex 5:410–428

    PubMed  Google Scholar 

  • Latash ML (1999) Mirror writing: learning, transfer and implications for internal inverse models. J Motor Behav 31:107–111

    Google Scholar 

  • Manganotti P, Gerloff C, Toro C, Katsuta H, Sadato N, Zhuang P, Leocani L, Hallett M (1998) Task-related coherence and task-related spectral power changes during sequential finger movements. Electroencephalogr Clin Neurophysiol 109:50–62

    Article  CAS  PubMed  Google Scholar 

  • Milivojevic B, Johnson BW, Hamm JP, Corballis MC (2003) Non-identical neural mechanisms for two types of mental transformation: event-related potentials during mental rotation and mental paper folding. Neuropsychologia 41:1345-1356

    Article  CAS  PubMed  Google Scholar 

  • Natio E, Matsumara M (1994) Movement-related potentials associated with motor inhibition as determined by use of a stop signal paradigm in humans. Cogn Brain Res 2:139–146

    Article  Google Scholar 

  • Natio E, Matsumara M (1996) Movement-related potentials associated with motor inhibition under different preparatory states during performance of two visual stop signal paradigms in humans. Neuropsychologia 43:565–573

    Google Scholar 

  • Neshige R, Lüders H, Friedman L, Shibasaki H (1988) Recording of movement-related potentials from the human cortex. Ann Neurol 24:439–445

    CAS  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Parlow SE, Kinsbourne M (1989) Asymmetrical transfer of training between hands: implications for interhemispheric communication in normal brain. Brain Cogn 11:98–113

    CAS  PubMed  Google Scholar 

  • Pfefferbaum A, Ford JM, Weller BJ, Kopell BS (1985) ERP to response production and inhibition. Electroencephgr Clin Neurophysiol 60:423–434

    Article  CAS  Google Scholar 

  • Rescher B, Rappelsberger P (1999) Gender dependent EEG-changes during a mental rotation task. Int J Psychophysiol 33:209–222

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez R (1991) Hand motor patterns after the correction of left-nondominant hand mirror writing. Neuropsychologia 29:1191–1203

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez R, Aguilar M, Gonzalez G (1989) Left non-dominant hand mirror writing. Brain Lang 37:122–144

    CAS  PubMed  Google Scholar 

  • Scott SE, Sergio LH, Kalaska JF (1997) Reaching movements with similar hand paths but different arm orientation. II. Activity of individual cells in dorsal premotor and parietal area 5. J Neurophysiol 78:2413–2426

    CAS  PubMed  Google Scholar 

  • Seitz RJ, Canvan AGM, Yaguez L, Herzog H, Tellmann L, Knorr U, Huang Y, Homberg V (1997) Representation of graphomotor trajectories in the human parietal cortex: evidence for controlled and automatic performance. Eur J Neurosi 9:378–389

    CAS  Google Scholar 

  • Servos P, Goodale MA (1994) Binocular vision and the on-line control of human prehension. Exp Brain Res 98:119–127

    CAS  PubMed  Google Scholar 

  • Shadmehr R, Holcomb HH (1997) Neural correlates of motor memory consolidation. Science 277:821–825

    Article  CAS  PubMed  Google Scholar 

  • Silberstein RB, Danieli F, Nunez PL (1999) Fronto-parietal evoked potential synchronization is increased during mental rotation. Neuroreport 14:67–71

    Google Scholar 

  • Singer W (1995) Development and plasticity of cortical processing architectures. Science 270:758–763

    CAS  PubMed  Google Scholar 

  • Slobounov S, Ray W (1998) Movement-related potentials with reference to isometric force output in discrete and repetitive tasks. Exp Brain Res 123:461–473

    Article  CAS  PubMed  Google Scholar 

  • Soetching JF, Flanders M (1989) Errors in pointing are due to approximations in sensorimotor transformations. J Neurophysiol 62:595–608

    PubMed  Google Scholar 

  • Thut G, Cook ND, Regard M, Leenders KL, Halsband U, Landis T (1996) Intermanual transfer of proximal and distal motor engrams in humans. Exp Brain Res 108:321–327

    CAS  PubMed  Google Scholar 

  • Toro C, Deutschl G, Thatcher R, Sato S, Kufta C, Hallett M (1994) Event-related desynchronization and movement-related cortical potentials on the ECoG and EEG. Electroencephalogr Clin Neurophysiol 93:380–389

    Article  CAS  PubMed  Google Scholar 

  • Vaid J, Stiles-Davis J (1989) Mirror writing: an advantage for the left-handed? Brain Lang 37:616–627

    CAS  PubMed  Google Scholar 

  • Voyer D (1995) Effect of practice on laterality in a mental rotation task. Brain Cogn 29:326–335

    Article  CAS  PubMed  Google Scholar 

  • Yang M (1997) Mirror writing in right-handers and in left-handers: a study using Chinese characters. Neuropsychologia 35:1491–1498

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully thank Jürgen Dax for assisting in the analysis of the behavioral data. This research was supported by a grant from the Volkswagen-Stiftung (junior research group ‘Cortical reorganization and learning’, AZ I/73035) and by the Deutsche Forschungsgemeinschaft (SFB 550/C6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Braun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lange, R.K., Godde, B. & Braun, C. EEG correlates of coordinate processing during intermanual transfer. Exp Brain Res 159, 161–171 (2004). https://doi.org/10.1007/s00221-004-1942-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-1942-x

Keywords

Navigation