Skip to main content
Log in

Timing of bimanual movements and deafferentation: implications for the role of sensory movement effects

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In a repetitive tapping task, the within-hand variability of intertap intervals is reduced when participants tap with both hands instead of single-handedly. This bimanual advantage has been attributed to timer as opposed to motor variance (according to the Wing-Kristofferson model; Helmuth and Ivry 1996) and related to the additional sensory consequences of the movement of the extra hand in the bimanual case (Drewing et al. 2002). In the present study the effect of sensory feedback of the movement on this advantage was investigated by comparing the results of a person (IW) deafferented below the neck with those of age-matched controls. IW showed an even more pronounced bimanual advantage than controls, suggesting that the bimanual advantage is not due to actual sensory feedback. These results support another hypothesis, namely that bimanual timing profits from the averaging of different central control signals that relate to each effector’s movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aschersleben G (2002) Temporal control of movements in sensorimotor synchronization. Brain Cogn 48:66–79

    Article  PubMed  Google Scholar 

  • Aschersleben G, Prinz W (1995) Synchronizing actions with events: the role of sensory information. Percept Psychophys 57:305–317

    Google Scholar 

  • Aschersleben G, Prinz W (1997) Delayed auditory feedback in synchronization. J Mot Behav 29:35–46

    Google Scholar 

  • Aschersleben G, Stenneken P, Cole J, Prinz W (2002) Timing mechanisms in sensorimotor synchronization. In: Prinz W, Hommel B (eds) Common mechanisms in perception and action: attention and performance, vol XIX. Oxford University Press, Oxford, pp 227–244

  • Bard C, Paillard J, Lajoie Y, Fleury M, Teasdale N, Forget R, Lamarre Y (1992) Role of afferent information in the timing of motor commands: a comparative study with a deafferented patient. Neuropsychologia 30:201–206

    CAS  PubMed  Google Scholar 

  • Barratt ES, Patton J, Olsson NG, Zuker G (1981) Impulsivity and paced tapping. J Mot Behav 13:286–300

    Google Scholar 

  • Billon M, Semjen A (1995) The timing effects of accent production in synchronization and continuation tasks performed by musicians and nonmusicians. Psychol Res 58:206–217

    CAS  PubMed  Google Scholar 

  • Billon M, Semjen A, Cole J, Gauthier G (1996a) The role of sensory information in the production of periodic finger-tapping sequences. Exp Brain Res 110:117–130

    CAS  PubMed  Google Scholar 

  • Billon M, Semjen A, Stelmach GE (1996b) The timing effects of accent production in periodic finger-tapping sequences. J Mot Behav 28:198–210

    PubMed  Google Scholar 

  • Blakemore S-J, Wolpert DM, Frith CD (1998) Central cancellation of self-produced tickle sensation. Nat Neurosci 1:635–640

    CAS  PubMed  Google Scholar 

  • Blakemore S-J, Frith CD, Wolpert DM (2001) The cerebellum is involved in predicting the sensory consequences of action. Neuroreport 12:1879–1884

    CAS  PubMed  Google Scholar 

  • Cole J (1995) Pride and a Daily marathon. MIT Press, Cambridge

  • Cole J (1998) Rehabilitation after sensory neuronopathy syndrome. J R Soc Med 91:30–32

    CAS  Google Scholar 

  • Cole J, Paillard J (1995) Living without touch and peripheral information about body position and movement: studies with deafferented subjects. In: Bermudez JL, Marcel AJ (eds) The body and the self. MIT Press, Cambridge, pp 245–266

  • Cole J, Sedgwick EM (1992) The perceptions of force and of movement in a man without large myelinated sensory afferents below the neck. J Physiol 449:503–515

    CAS  PubMed  Google Scholar 

  • Cooke JD, Brown S, Forget R, Lamarre Y (1985) Initial agonist burst changes with movement amplitude in a deafferented patient. Exp Brain Res 60:184–187

    CAS  PubMed  Google Scholar 

  • Drewing K (2001) Die Rolle sensorischer Reafferenzen bei der zeitlichen Steuerung von Handlungen. Logos, Berlin

  • Drewing K, Aschersleben G (2003) Reduced timing variability during bimanual coupling: a role for sensory information. Q J Exp Psychol 56A:329–350

    Google Scholar 

  • Drewing K, Hennings M, Aschersleben G (2002) The contribution of tactile reafference to temporal regularity during bimanual finger tapping. Psychol Res 66:60–70

    Article  PubMed  Google Scholar 

  • Fetterman JG, Killeen PR (1990) A componential analysis of pacemaker-counter timing systems. J Exp Psychol Hum Percept Perform 16:766–780

    Article  CAS  PubMed  Google Scholar 

  • Fraisse P (1980) Les synchronisations sensori-motrices aux rythmes. In: Requin J (ed) Anticipation et comportement. Centre National, Paris, pp 233–257

  • Franz EA, Ramachandran VS (1998) Bimanual coupling in amputees with phantom limbs. Nat Neurosci 1:443–444

    Article  CAS  PubMed  Google Scholar 

  • Franz EA, Ivry RB, Helmuth LL (1996) Reduced timing variability in patients with unilateral cerebellar lesions during bimanual movements. J Cogn Neurosci 8:107–118

    Google Scholar 

  • Gehrke J (1996) Afferente Informationsverarbeitung und die Synchronisation von Ereignissen. Unpublished doctoral dissertation, Ludwig-Maximilians-University Munich

  • Helmuth LL, Ivry RB (1996) When two hands are better than one: reduced timing variability during bimanual movements. J Exp Psychol Hum Percept Perform 22:278–293

    Article  CAS  PubMed  Google Scholar 

  • Hommel B, Müsseler J, Aschersleben G, Prinz W (2001) The theory of event coding (TEC): a framework for perception and action planning. Behav Brain Sci 24:849–937

    CAS  PubMed  Google Scholar 

  • Ivry RB, Hazeltine RE (1995) Perception and production of temporal intervals across a range of durations: evidence for a common timing mechanism. J Exp Psychol Hum Percept Perform 21:3–18

    Article  CAS  Google Scholar 

  • Ivry RB, Keele SW (1989) Timing functions of the cerebellum. J Cogn Neurosci 1:136–152

    Google Scholar 

  • Ivry RB, Richardson TC (2002) Temporal control and coordination: the multiple timer model. Brain Cogn 48:117–132

    Article  PubMed  Google Scholar 

  • Ivry RB, Keele SW, Diener HC (1988) Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Exp Brain Res 73:167–180

    PubMed  Google Scholar 

  • Ivry RB, Richardson TC, Helmuth LL (2002) Improved temporal stability in multieffector movements. J Exp Psychol Hum Percept Perform 28:72–92

    Article  Google Scholar 

  • Krampe RT, Engbert R, Kliegl R (2001) Age-specific problems in rhythmic timing. Psychol Aging 16:12–30

    CAS  PubMed  Google Scholar 

  • LaRue J, Bard C, Fleury M, Teasdale N, Paillard J, Forget R, Lamarre Y (1995) Is proprioception important for the timing of motor activities. Can J Physiol Pharmacol 73:255–261

    CAS  PubMed  Google Scholar 

  • Miedreich F (2000) Zeitliche Steuerung von Handlungen: Empirischer Test des Wing-Kristofferson Modells. Shaker, Aachen

    Google Scholar 

  • Paillard J (1949) Quelques données psychophysiologiques relatives au déclenchement de la commande motrice (Some psychophysical data relating to the triggering of motor commands). L’Année Psychologique 48:28–47

    Google Scholar 

  • Semjen A, Leone G, Lipshits M (1998) Temporal control and motor control: two functional modules which may be influenced differently under microgravity. Hum Mov Sci 17:77–93

    Article  CAS  PubMed  Google Scholar 

  • Stenneken P (2001) Die zeitliche Steuerung von Handlungen. Eine vergleichende Studie mit einem deafferentierten Patienten. Unpublished doctoral dissertation, Ludwig-Maximilians-University Munich

  • Stenneken P, Aschersleben G, Cole J, Prinz W (2002) Self-induced versus reactive triggering of synchronous movements in a deafferented patient and control subjects. Psychol Res 66:40–49

    Article  CAS  PubMed  Google Scholar 

  • Vanneste S, Pouthas V, Wearden JH (2001) Temporal control of rhythmic performance: a comparison between young and old adults. Exp Aging Res 27:2083–2102

    Google Scholar 

  • Vorberg D, Wing A (1996) Modeling variability and dependence in timing. In: Heuer H, Keele SW (eds) Handbook of perception and action. Motor skills, vol 3. Academic Press, London, pp 287–299

  • Williams HG, Greene LS (1993) Age-related differences in timing control of repetitive movement: application of the Wing-Kristofferson model. Res Q Exerc Sport 64:32–38

    PubMed  Google Scholar 

  • Wing AM (1977) Perturbations of auditory feedback delay and the timing of movement. J Exp Psychol Hum Percept Perform 3:175–186

    Article  CAS  PubMed  Google Scholar 

  • Wing AM, Kristofferson AB (1973a) Response delays and the timing of discrete motor responses. Percept Psychophys 14:5–12

    Google Scholar 

  • Wing AM, Kristofferson AB (1973b) The timing of interresponse intervals. Percept Psychophys 13:455–460

    Google Scholar 

  • Witney AG, Goodbody SJ, Wolpert DM (1999) Predictive motor learning of temporal delays. J Neurophysiol 82:2039–2048

    CAS  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269:1880–1882

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We express our gratitude to IW for his participation in the experiment and his great patience and helpful comments in this matter. We wish also to thank Bruno Repp and an anonymous reviewer for their helpful criticisms, suggestions, and comments on earlier drafts, Frank Miedreich for parts of the programming, and Sabine Burger for her support in data collection. This research was partially supported by a grant from the Deutsche Forschungsgemeinschaft to the fourth and fifth author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Knut Drewing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drewing, K., Stenneken, P., Cole, J. et al. Timing of bimanual movements and deafferentation: implications for the role of sensory movement effects. Exp Brain Res 158, 50–57 (2004). https://doi.org/10.1007/s00221-004-1870-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-1870-9

Keywords

Navigation