Skip to main content
Log in

Learning impaired children exhibit timing deficits and training-related improvements in auditory cortical responses to speech in noise

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The physiological mechanisms that contribute to abnormal encoding of speech in children with learning problems are yet to be well understood. Furthermore, speech perception problems appear to be particularly exacerbated by background noise in this population. This study compared speech-evoked cortical responses recorded in a noisy background to those recorded in quiet in normal children (NL) and children with learning problems (LP). Timing differences between responses recorded in quiet and in background noise were assessed by cross-correlating the responses with each other. Overall response magnitude was measured with root-mean-square (RMS) amplitude. Cross-correlation scores indicated that 23% of LP children exhibited cortical neural timing abnormalities such that their neurophysiological representation of speech sounds became distorted in the presence of background noise. The latency of the N2 response in noise was isolated as being the root of this distortion. RMS amplitudes in these children did not differ from NL children, indicating that this result was not due to a difference in response magnitude. LP children who participated in a commercial auditory training program and exhibited improved cortical timing also showed improvements in phonological perception. Consequently, auditory pathway timing deficits can be objectively observed in LP children, and auditory training can diminish these deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2A–F
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7A–C

Similar content being viewed by others

References

  • Alain C, Woods D, Knight R (1998) A distributed cortical network for auditory sensory memory in humans. Brain Res 812:23–37

    Article  CAS  PubMed  Google Scholar 

  • Atienza M, Cantero JL, Dominguez-Marin E (2002) The time course of neural changes underlying auditory perceptual learning. Learn Mem 9:138–150

    Article  PubMed  Google Scholar 

  • Bellis TJ (1996) Assessment and management of central auditory processing disorders in the educational setting: from science to practice. Singular Publishing, San Diego

    Google Scholar 

  • Bosnyak DJ, Eaton RA, Roberts LE (2002) Enhancement of multiple components of the auditory evoked potential in nonmusicians by training for pitch discrimination with 40-Hz amplitude modulated tones. Proceedings of the 13th International Conference on Biomagnetism, Jena, Germany, August

  • Bradlow AR, Kraus N, Nicol TG, McGee TJ, Cunningham J, Zecker SG, Carrell TD (1999) Effects of lengthened formant transition duration on discrimination and neural representation of synthetic CV syllables by normal and learning-disabled children. J Acoust Soc Am 106:2086–2096

    Article  CAS  PubMed  Google Scholar 

  • Bradlow AR, Kraus N, Hayes E (2003) Speaking clearly for children with learning disabilities: sentence perception in noise. J Speech Lang Hear Res 46:80–97

    PubMed  Google Scholar 

  • Carrell TD, Bradlow AR, Nicol TG, Koch DB, Kraus N (1999) Interactive software for evaluating auditory discrimination. Ear Hearing 20:175–176

    Article  CAS  Google Scholar 

  • Čeponienė R, Rinne T, Näätänen R (2002) Maturation of cortical sound processing as indexed by event-related potentials. Clin Neurophysiol 113:870–882

    Article  PubMed  Google Scholar 

  • Chermak GD, Musiek FE (1997) Central auditory processing disorders: new perspectives. Singular Publishing, San Diego

    Google Scholar 

  • Cunningham J, Nicol T, Zecker S, Kraus N (2000) Speech-evoked neurophysiologic responses in children with learning problems: development and behavioral correlates of perception. Ear Hearing 21:554–568

    Article  CAS  Google Scholar 

  • Cunningham J, Nicol T, Zecker SG, Kraus N (2001) Neurobiologic responses to speech in noise in children with learning problems: deficits and strategies for improvement. Clin Neurophysiol 112:758–767

    Article  CAS  PubMed  Google Scholar 

  • Diehl S (1999) Listen & Learn? A software review of Earobics, language, speech and hearing services in schools. ASHA 30:108–116

    Google Scholar 

  • Edeline JM (2003) The thalamo-cortical auditory receptive fields: regulation by the states of vigilance, learning and the neuromodulatory systems. Exp Brain Res 153:554–572

    PubMed  Google Scholar 

  • Elliott LL (1979) Performance of children aged 9 to 17 years on a test of speech intelligibility in noise using sentence material with controlled word predictability. J Acoust Soc Am 66:651–653

    CAS  PubMed  Google Scholar 

  • Elliott LL, Hammer MA, Scholl ME (1989) Fine-grained auditory discrimination in normal children and children with language-learning problems. J Speech Hear Res 32:112–119

    CAS  PubMed  Google Scholar 

  • Hayes E, Warrier CM, Nicol T, Zecker SG, Kraus N (2003) Neural plasticity following auditory training in children with learning problems. Clin Neurophysiol 114:673–684

    Article  PubMed  Google Scholar 

  • Johnstone SJ, Barry RJ, Anderson JW (2001) Topographic distribution and developmental timecourse of auditory event-related potentials in two subtypes of attention-deficit hyperactivity disorder. Int J Psychophysiol 42:73–94

    Article  CAS  PubMed  Google Scholar 

  • Josey A (1985) Auditory brainstem response in site of lesion testing. In: Katz J (ed) Handbook of clinical audiology. Williams and Wilkins, Baltimore, MD, pp 534–548

  • Kilgard MP, Merzenich MM (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279:1714–1718

    CAS  PubMed  Google Scholar 

  • Kilgard MP, Merzenich MM (2002) Order-sensitive plasticity in adult primary auditory cortex. Proc Natl Acad Sci U S A 99:3205–3209

    Article  CAS  PubMed  Google Scholar 

  • King C, Warrier CM, Hayes E, Kraus N (2002) Deficits in auditory brainstem pathway encoding of speech sounds in children with learning problems. Neurosci Lett 319:111–115

    Article  CAS  PubMed  Google Scholar 

  • Klatt DH (1980) Software for a cascade/parallel formant synthesizer. J Acoust Soc Am 67:971–995

    Google Scholar 

  • Kraus N, McGee TJ, Carrell TD, Zecker SG, Nicol TG, Koch DB (1996) Auditory neurophysiologic responses and discrimination deficits in children with learning problems. Science 273:971–973

    CAS  PubMed  Google Scholar 

  • Liasis A, Bamiou DE, Campbell P, Sirimanna T, Boyd S, Towell A (2003) Auditory event-related potentials in the assessment of auditory processing disorders: a pilot study. Neuropediatrics 34:23–29

    Article  CAS  PubMed  Google Scholar 

  • Maiste AC, Wiens AS, Hunt MJ, Scherg M, Picton TW (1995) Event-related potentials and the categorical perception of speech sounds. Ear Hearing 16:68–90

    CAS  Google Scholar 

  • Martin BA, Sigal A, Kurtzberg D, Stapells DR (1997) The effects of decreased audibility produced by high-pass noise masking on cortical event-related potentials to speech sounds /ba/ and /da/. J Acoust Soc Am 101:1585–1599

    Article  CAS  PubMed  Google Scholar 

  • Martin BA, Kurtzberg D, Stapells DR (1999) The effects of decreased audibility produced by high-pass noise masking on N1 and the mismatch negativity to speech sounds /ba/ and /da/. J Speech Lang Hear Res 42:271–286

    CAS  PubMed  Google Scholar 

  • Menning H, Roberts LE, Pantev C (2000) Plastic changes in the auditory cortex induced by intensive frequency discrimination training. Neuroreport 11:817–822

    CAS  PubMed  Google Scholar 

  • Morrison S (1998) Computer applications. Earobics Pro Child Lang Teaching Ther 14:279–284

    Article  Google Scholar 

  • Musiek FE (1991) Auditory evoked responses in site-of-lesion assessment. In: Rintelmann WF (ed) Hearing assessment. Pro-Ed, Austin, TX, pp 383–427

  • Näätänen R, Picton TW (1986) N2 and automatic versus controlled processes. Electroencephalogr Clin Neurophysiol Suppl 38:169–186

    PubMed  Google Scholar 

  • Näätänen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24:375–425

    PubMed  Google Scholar 

  • Näätänen R, Simpson M, Loveless NE (1982) Stimulus deviance and evoked potentials. Biol Psychol 14:53–98

    Article  PubMed  Google Scholar 

  • Nabelek AK, Pickett JM (1974) Reception of consonants in a classroom as affected by monaural and binaural listening, noise, reverberation, and hearing aids. J Acoust Soc Am 56:628–639

    CAS  PubMed  Google Scholar 

  • Oates PA, Kurtzberg D, Stapells DR (2002) Effects of sensorineural hearing loss on cortical event-related potential and behavioral measures of speech-sound processing. Ear Hear 23:399–415

    Article  PubMed  Google Scholar 

  • Phillips DP (1993) Representation of acoustic events in the primary auditory cortex. J Exp Psychol Hum Percept Perform 19:203–216

    Article  CAS  PubMed  Google Scholar 

  • Ponton CW, Vasama JP, Tremblay K, Khosla D, Kwong B, Don M (2001) Plasticity in the adult human central auditory system: evidence from late-onset profound unilateral deafness. Hear Res 154:32–44

    Article  CAS  PubMed  Google Scholar 

  • Russo NM, Nicol T, Hayes E, Zecker S, Kraus N (2003) Auditory training can improve neural timing in the auditory brainstem. Program No. 400.33. 2003 Abstract Viewer/Itinerary Planner. Society for Neuroscience, Washington, DC, 2003. Online

  • Scherg M, Von Cramon D (1985) Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. Electroencephalogr Clin Neurophysiol 62:32–44

    CAS  PubMed  Google Scholar 

  • Shahin A, Bosnyak DJ, Trainor LJ, Roberts LE (2003) Enhancement of neuroplastic P2 and N1c auditory evoked potentials in musicians. J Neurosci 23:5545–5552

    CAS  PubMed  Google Scholar 

  • Shtyrov Y, Kujala T, Lyytinen H, Ilmoniemi RJ, Näätänen R (2000) Auditory cortex evoked magnetic fields and lateralization of speech processing. Neuroreport 11:2893–2896

    CAS  PubMed  Google Scholar 

  • Stark RE, Heinz JM (1996) Vowel perception in children with and without language impairment. J Speech Hear Res 39:860–869

    CAS  PubMed  Google Scholar 

  • Tallal P (1980) Auditory temporal perception, phonics, and reading disabilities in children. Brain Lang 9:182–198

    CAS  PubMed  Google Scholar 

  • Tallal P, Piercy M (1974) Developmental aphasia: rate of auditory processing and selective impairment of consonant perception. Neuropsychologia 12:83–93

    Article  CAS  PubMed  Google Scholar 

  • Taylor MM, Creelman CD (1967) PEST: efficient estimates on probability functions. J Acoust Soc Am 41:782–787

    Google Scholar 

  • Tonnquist-Uhlen I (1996a) Topography of auditory evoked cortical potentials in children with severe language impairment. Scand Audiol Suppl 44:1–40

    CAS  PubMed  Google Scholar 

  • Tonnquist-Uhlen I (1996b) Topography of auditory evoked long-latency potentials in children with severe language impairment: the P2 and N2 components. Ear Hearing 17:314–326

    Article  CAS  Google Scholar 

  • Tremblay KL, Kraus N (2002) Auditory training induces asymmetrical changes in cortical neural activity. J Speech Lang Hear Res 45:564–572

    PubMed  Google Scholar 

  • Tremblay K, Kraus N, McGee T, Ponton C, Otis B (2001) Central auditory plasticity: changes in the N1-P2 complex after speech-sound training. Ear Hear 22:79–90

    Article  CAS  PubMed  Google Scholar 

  • Whiting KA, Martin BA, Stapells DR (1998) The effects of broadband noise masking on cortical event-related potentials to speech sounds /ba/ and /da/. Ear Hear 19:218–231

    Article  CAS  PubMed  Google Scholar 

  • Wible B, Nicol T, Kraus N (2002) Abnormal neural encoding of repeated speech stimuli in noise in children with learning problems. Clin Neurophysiol 113:485–494

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson G (1993) Wide range achievement test-3. Jastak Assoc., Wilmington, DE

  • Woodcock R, Johnson M (1977) Woodcock-Johnson Psycho-Educational Battery. Tests of cognitive ability. DLM Teaching Resources, Allen, TX

  • Woodcock R, Johnson M (1989) Woodcock-Johnson Psycho-Educational Battery-Revised. Tests of cognitive ability. DLM Teaching Resources, Allen, TX

Download references

Acknowledgements

We would like to thank the children and their families for participating in this study. This work was supported by National Institute of Health Grant R01DC01510.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine M. Warrier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warrier, C.M., Johnson, K.L., Hayes, E.A. et al. Learning impaired children exhibit timing deficits and training-related improvements in auditory cortical responses to speech in noise. Exp Brain Res 157, 431–441 (2004). https://doi.org/10.1007/s00221-004-1857-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-1857-6

Keywords

Navigation