Skip to main content
Log in

Movement speed effects on limb position drift

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Previous research has shown that even when limb position drifts considerably during continuous blind performance, the topological and metrical properties of generated hand paths remain remarkably invariant. We tested two possible accounts of this intriguing effect. According to one hypothesis, position drift is due to degradation of limb-position information. This hypothesis predicted that drift of static hand positions at movement reversals should not depend on movement speed. According to the other hypothesis, position drift is due to degradation of movement information. This hypothesis predicted that drift of static hand positions at movement reversals should vary with movement speed. We tested these two hypotheses by varying the required movement speed when normal human adults performed back-and-forth manual positioning movements in the absence of visual feedback. Movement distance and direction were well preserved even though hand positions between movements drifted considerably. In accord with the movement error hypothesis, but not in accord with the position hypothesis, the rate at which hand positions drifted depended on movement speed. The data are consistent with the idea that hand position, which defines the origin of the trajectory control coordinate system, and movement trajectory are controlled by distinct neural mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.
Fig. 2A, B.
Fig. 3.
Fig. 4A, B.
Fig. 5A, B.
Fig. 6.
Fig. 7A, B.

Similar content being viewed by others

References

  • Adams HF(1912) Autokinetic sensations. Psychol Monogr 14:1–45

    Google Scholar 

  • Bock O, Arnold K (1993) Error accumulation and error correction in sequential pointing movements. Exp Brain Res 95:111–117

    CAS  PubMed  Google Scholar 

  • Bock, O, Eckmiller R (1986) Goal directed arm movements in absence of visual guidance: evidence for amplitude rather than position control. Exp Brain Res 62:451–458

    CAS  PubMed  Google Scholar 

  • Bock O, Dose M, Ott D, Eckmiller R (1990) Control of arm movements in a 2-dimensional pointing task. Behav Brain Res 40:247–250

    Article  CAS  PubMed  Google Scholar 

  • Brown LE, Rosenbaum DA (2001) Coordinate systems for movement planning: evidence from positional drift. Psychon Soc Abstr 6:16

    Google Scholar 

  • Brown LE, Rosenbaum DA, Sainburg RL (2003) Limb position drift: implications for control of posture and movement. J Neurophysiol (in press)

  • Desmurget M, Vindras P, Grea H, Viviani P, Grafton ST (2000) Proprioception does not quickly drift during visual occlusion. Exp Brain Res 134:363–377

    CAS  PubMed  Google Scholar 

  • DiZio P, Lackner JR (1995) Motor adaptation to Coriolis force perturbations of reaching movements: endpoint but not trajectory adaptation transfers to the nonexposed arm. J Neurophysiol 74:1787–1792

    CAS  PubMed  Google Scholar 

  • DiZio P, Lackner JR (2001) Coriolis-force-induced trajectory and endpoint deviations in the reaching movements of labyrinthine-defective subjects. J Neurophysiol 85:784–789

    CAS  PubMed  Google Scholar 

  • Fel'dman AG (1986) Once more on the EPH (λ model) for motor control. J Mot Behav 18:17–54

    Google Scholar 

  • Georgopoulos AP (1995) Current issues in directional motor control. Trends Neurosci 18:506–10

    CAS  PubMed  Google Scholar 

  • Georgopoulos AP (2000) Neural aspects of cognitive motor control. Curr Opin Neurobiol 10:238–241

    CAS  PubMed  Google Scholar 

  • Ghez C, Hening W, Gordon J (1991) Organization of voluntary movement. Curr Opin Neurobiol 1:664–671

    CAS  PubMed  Google Scholar 

  • Ghilardi MF, Gordon J, Ghez C (1995) Learning a visuomotor transformation in a local area of work space produces directional biases in other areas. J Neurophysiol 73:2535–2539

    CAS  PubMed  Google Scholar 

  • Gordon J, Ghez C (1987a) Trajectory control in targeted force impulses. II. Pulse height control. Exp Brain Res 67:241–52

    CAS  PubMed  Google Scholar 

  • Gordon J, Ghez C (1987b) Trajectory control in targeted force impulses. III. Compensatory adjustments for initial errors. Exp Brain Res 67:253–69

    CAS  PubMed  Google Scholar 

  • Gordon J, Ghilardi MF, Ghez C (1994) Accuracy of planar reaching movements. I. Independence of direction and extent variability. Exp Brain Res 99:97–111

    CAS  PubMed  Google Scholar 

  • Graziano MSA (1999) Where is my arm? The relative role of vision and proprioception in the neuronal representation of limb position. Proc Natl Acad Sci USA 96:10418–10421

    Article  CAS  PubMed  Google Scholar 

  • Graziano MS, Taylor CSR, Moore T (2002) Complex movements evoked by microstimulation of precentral cortex. Neuron 34:841–851

    CAS  PubMed  Google Scholar 

  • Kakei S, Hoffman DS, Strick PL (1999) Muscle and movement representations in the primary motor cortex. Science 285:2136–2139

    Article  CAS  PubMed  Google Scholar 

  • Kalaska JF (1988) The representation of arm movements in postcentral and parietal cortex. Can J Physiol Pharmacol 66:455–463

    CAS  PubMed  Google Scholar 

  • Kalaska JF, Caminiti R, Georgopoulos AP (1983) Cortical mechanisms related to the direction of two-dimensional arm movements: relations in parietal area 5 and comparison with motor cortex. Exp Brain Res 51:247–260

    CAS  PubMed  Google Scholar 

  • Lackner JR, DiZio P (1994) Rapid adaptation to Coriolis force perturbations of arm trajectory. J Neurophysiol 72:299–313

    CAS  PubMed  Google Scholar 

  • Marteniuk RG, Roy EA (1972) The codability of kinesthetic location and distance information. Acta Psychol 36:471–479

    Article  CAS  Google Scholar 

  • Miall RC, Haggard PN, Cole JD (1995) Evidence of a limited visuo-motor memory used in programming wrist movements. Exp Brain Res 107:267–280

    CAS  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia 9:97–113

    CAS  PubMed  Google Scholar 

  • Paillard J, Brouchon M (1968) Active and passive movements in the calibration of position sense. In: Freedman SJ (ed) The neuropsychology of spatially oriented behavior. Dorsey Press, Homewood IL

  • Rosenbaum DA (1980) Human movement initiation: specification of arm, direction, and extent. J Exp Psychol Gen 109:444–474

    CAS  PubMed  Google Scholar 

  • Rosenbaum DA, Meulenbroek R, Vaughan J, Jansen, C (2001) Posture-based motion planning. Psychol Rev 108:709–734

    CAS  PubMed  Google Scholar 

  • Sainburg RL, Kalakanis D (2000) Differences in control of limb dynamics during dominant and nondominant arm reaching. J Neurophysiol 83:2661–2675

    CAS  PubMed  Google Scholar 

  • Sainburg RL, Wang J (2002) Interlimb transfer of visuomotor rotations: independence of direction and final position information. Exp Brain Res 145:437–447

    PubMed  Google Scholar 

  • Sainburg RL, Lateiner JE, Latash M, Bagesteiro LB (2003) Differential contributions of proprioception and vision to vectorial representations in reaching. J Neurophysiol 89:401–415

    PubMed  Google Scholar 

  • Sittig AC, Denier Van Der Gon JJ, Gielen CCAM, Van Wijk AJM (1985) The attainment of target position during step-tracking movements despite a shift of initial position. Exp Brain Res 60:407–410

    CAS  PubMed  Google Scholar 

  • Smyth MM (1984) Memory for movements. In: Smyth MM, Wing AM (eds) The psychology of human movement. Academic Press, London, pp. 83–117

  • van Beers RJ, Sittig AC, Denier von der Gon JJ (1998) The precision of proprioceptive position sense. Exp Brain Res 122:367–377

    PubMed  Google Scholar 

  • van Beers RJ, Sittig AC, Denier von der Gon JJ (1999) Integration of proprioceptive and visual position information: an experimentally supported model. J Neurophysiol 81:1355–1364

    PubMed  Google Scholar 

  • van den Dobbelsteen JJ, Brenner E, Smeets JBJ (2001) Endpoints of arm movements to visual targets. Exp Brain Res 138:279–287

    Article  PubMed  Google Scholar 

  • Verschueren SMP, Swinnen SP, Cordo PJ, Dounskaia NV (1999) Proprioceptive control of multijoint movement: unimanual circle drawing. Exp Brain Res 127:171–181

    Article  CAS  PubMed  Google Scholar 

  • Wann JP, Ibrahim SF (1993) Does limb proprioception drift? Exp Brain Res 91:162–166

    Google Scholar 

  • Wolpert DM, Goodbody SJ, Husain M (1998) Maintaining internal representations: the role of the human superior parietal lobe. Nat Neurosci 1:529–533

    Article  CAS  PubMed  Google Scholar 

  • Zelaznick HN, Lantero D (1996) The role of vision in repetitive circle drawing. Acta Psychol 92:105–118

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by grant #R01-HD39011 awarded to RLS by NIH-NICHHD (US National Institutes of Child Health and Human Development).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liana E. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, L.E., Rosenbaum, D.A. & Sainburg, R.L. Movement speed effects on limb position drift. Exp Brain Res 153, 266–274 (2003). https://doi.org/10.1007/s00221-003-1601-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1601-7

Keywords

Navigation