Skip to main content
Log in

Instabilities during antiphase bimanual movements: are ipsilateral pathways involved?

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The spatial and temporal coupling between the hands is known to be very robust during movements which use homologous muscles (in-phase or symmetric movements). In contrast, movements using nonhomologous muscles (antiphase or asymmetric movements) are less stable and exhibit a tendency to undergo a phase transition to in-phase movements as movement frequency increases. The instability during antiphase movements has been modeled in terms of signal interference mediated by the ipsilateral corticospinal pathways. In this study we report that participants in whom distal ipsilateral motor-evoked potentials could be elicited with transcranial magnetic stimulation (TMS), exhibited higher variability during a bimanual circling task than participants whose ipsilateral pathways could not be transcranially activated. These results suggest that ipsilateral control of the limb affects the level of bimanual coupling, and may contribute to uncoupling phenomena observed during asymmetric coordination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4A–D.
Fig. 5.

Similar content being viewed by others

References

  • Bogaerts H, Swinnen SP (2001) Spatial interactions during bimanual coordination patterns: the effect of directional compatibility. Motor Control 5:183–199

    CAS  PubMed  Google Scholar 

  • Byblow WD, Summers JJ, Semjen A, Wuyts IJ, Carson RG (1999) Spontaneous and intentional pattern switching in a multisegmental bimanual coordination task. Motor Control 3:372–393

    CAS  PubMed  Google Scholar 

  • Byblow WD, Lewis GN, Stinear JW, Austin NJ, Lynch M (2000) The subdominant hand increases in the efficacy of voluntary alterations in bimanual coordination. Exp Brain Res 131:366–374

    CAS  PubMed  Google Scholar 

  • Carson RG, Thomas J, Summers JJ, Walters MR, Semjen A (1997) The dynamics of bimanual circle drawing. Q J Exp Psychol 50A:664–683

    Article  Google Scholar 

  • Carson RG, Riek S, Bawa P (1999) Electromyographic activity, H-reflex modulation and corticospinal input to forearm motoneurones during active and passive rhythmic movements. Hum Mov Sci 18:307–343

    Article  Google Scholar 

  • Cattaert D, Semjen A, Summers JJ (1999) Simulating a neural cross-talk model for between-hand interference during bimanual circle drawing. Biol Cybern 81:343–358

    Article  CAS  PubMed  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences. Erlbaum, Hillsdale, New Jersey

  • Colebatch JG, Gandevia S (1989) The distribution of muscular weakness in upper motor neuron lesions affecting the arm. Brain 112:749–763

    PubMed  Google Scholar 

  • Cracco RQ, Amassian VE, Maccabee PJ, Cracco JB (1989) Comparison of human transcallosal responses evoked by magnetic coil and electrical stimulation. Electroen Clin Neuro 74:417–424

    Article  CAS  Google Scholar 

  • De Jong BM, Willemsen A, T. M., Paans AMJ (1999) Brain activation related to the change between bimanual motor programs. NeuroImage 9:290–297

    Article  PubMed  Google Scholar 

  • De Oliviera SC, Gribova A, Bergman H, Vaadia E (2001) Neural interactions between motor cortical hemispheres during bimanual and unimanual arm movements. Eur J Neurosci 14:1881–1896

    Article  PubMed  Google Scholar 

  • Debaere F, Swinnen SP, Beatse E, Sunaert S, van Hecke P, Duysens J (2001) Brain areas involved in interlimb coordination: a distributed network. Neuroimage 14:947–958

    CAS  PubMed  Google Scholar 

  • Dettmers C, Fink G, Lemon R, Stephan K, Passingham R, Silbersweig D, Homes A, Ridding M, Brooks D, Frackowiak R (1995) Relation between cerebral activity and force in the motor areas of the human brain. J Neurophysiol 74:802–815

    CAS  PubMed  Google Scholar 

  • Donchin O, Gribova A, Steinberg O, Bergman H, Vaadia E (1998) Primary motor cortex is involved in bimanual coordination. Nature 395:274–278

    Google Scholar 

  • Eliassen JD, Baynes K, Gazzaniga MS (2000) Anterior and posterior callosal contributions to simultaneous movements of the hands and fingers. Brain 123:2501–2511

    PubMed  Google Scholar 

  • Fox P, Ingham R, George MS, Mayberg H, Ingham J, Roby J, Martin C, Jerabek P (1997) Imaging human intra-cerebral connectivity by PET during TMS. Neuroreport 8:2787–2791

    CAS  PubMed  Google Scholar 

  • Franz EA, Eliassen JC, Ivry RB, Gazzaniga MS (1996) Dissociation of spatial and temporal coupling in the bimanual movements of callosotomy patients. Psychol Sci 7:306–310

    Google Scholar 

  • Haken H, Kelso JAS, Bunz H (1985) A theoretical model of phase transitions in human hand movements. Biol Cybern 51:347–356

    CAS  PubMed  Google Scholar 

  • Hedges LV, Olkin I (1985) Statistical methods for meta-analysis. Academic Press, Orlando (FL)

  • Hoshiyama M, Kakigi R, Berg P, Koyama S, Kitamura Y, Shimojo M, Watanabe S, Nakamura A (1997) Identification of motor and sensory brain activities during unilateral finger movement: spatiotemporal source analysis of movement-associated magnetic fields. Exp Brain Res 115:6–14

    CAS  PubMed  Google Scholar 

  • Immisch I, Waldvogel D, van Gelderen P, Hallett M (2001) The role of the medial wall and its anatomical variations for bimanual antiphase and in-phase movements. NeuroImage 14:674–684

    CAS  PubMed  Google Scholar 

  • Jancke L, Peters M, Himmelbach M, Nosselt T, Shah J, Steinmetz H (2000) fMRI study of bimanual coordination. Neuropsychologia 38:164–174

    PubMed  Google Scholar 

  • Jardin K, Swinnen S, Meulenbroek R (1994) Unimanual and bimanual two-dimensional drawing movements. J Sport Exer Phsy 16:S96

    Google Scholar 

  • Jasper H (1958) The ten-twenty electrode system of the International Federation. Electroen Clin Neuro 10:371–375

    Google Scholar 

  • Kagerer FA, Wittman M, Szelag E, v Steinbuchel N (2002) Cortical involvement in temporal reproduction: evidence for differential roles of the hemispheres. Neuropsychologia 40:357–366

    Article  PubMed  Google Scholar 

  • Kelso JAS (1981) On the oscillatory basis of movement. B Psychonomic Soc 18:63

    Google Scholar 

  • Kennerley SW, Diedrichsen J, Hazeltine E, Semjen A, Ivry RB (2002) Callosotomy patients exhibit temporal uncoupling during continuous bimanual movements. Nature Neurosci 5:367–381

    Article  Google Scholar 

  • Kermadi I, Liu Y, Rouiller EM (2000) Do bimanual motor actions involve the dorsal premotor (PMd), cingulate (CMA) and posterior parietal (PPC) cortices? Comparison with primary and supplementary motor cortical areas. Somatosens Mot Res 17:255–271

    CAS  PubMed  Google Scholar 

  • Kuypers H, Brinkman J (1970) Precentral projections to different parts of the spinal intermediate zone in the rhesus monkey. Brain Res 24:29–48

    Article  CAS  PubMed  Google Scholar 

  • Mardia KV (1972) Statistics of directional data. Academic Press, London

  • Muellbacher W, Facchini S, Boroojerdi B, Hallett M (2000) Changes in motor cortex excitability during ipsilateral hand muscle activation in humans. Clin Neurophysiol 111:344–349

    CAS  PubMed  Google Scholar 

  • Murthy VN, Fetz EE (1996) Synchronization of neurons during local field potential oscillations in sensorimotor cortex of awake monkeys. J Neurophysiol 76:3968–3982

    CAS  PubMed  Google Scholar 

  • Nathan PW, Smith MC, Deacon P (1990) The corticospinal tracts in man. Brain 113:303–324

    PubMed  Google Scholar 

  • Nirkko AC, Ozdoba D, Redmond SM, Burki M, Schroth G, Hess DW, Wiesendanger M (2001) Different ipsilateral representations for distal and proximal movements in the sensorimotor cortex: activation and deactivation patterns. Neuroimage 13:825–835

    CAS  PubMed  Google Scholar 

  • Rao SM, Binder J, Bandettini P, Hammeke T, Yetkin F, Jesmanowicz A, Lisk L, Morris G, Mueller W, Estkowski L, Wong E, Haughton V, Hyde J (1993) Functional magnetic resonance imaging of complex human movements. Neurology 43:2311–2318

    Google Scholar 

  • Schöner G, Kelso JAS (1988) Dynamic pattern generation in behavioral and neural systems. Science 239:1513–1520

    PubMed  Google Scholar 

  • Semjen A, Summers JJ, Cattaert D (1995) Hand coordination in bimanual circle drawing. J Exp Psychol 21:1139–1157

    Article  Google Scholar 

  • Stucchi N, Viviani P (1993) Cerebral dominance and asynchrony between bimanual two-dimensional movements. J Exp Psychol Hum Percept Perform 19:1200–1220

    Google Scholar 

  • Summers JJ, Byblow WD, Bysouth-Young DF, Semjen A (1998) Bimanual circle drawing during secondary task loading. Motor Control 2:106–113

    CAS  PubMed  Google Scholar 

  • Swinnen SP, Jardin K, Meulenbroek R (1996) Between-limb asynchronies during bimanual coordination: effects of manual dominance and attentional cueing. Neuropsychologia 12:1203–1213

    Article  Google Scholar 

  • Tanji J (1987) Relation of neurons in the nonprimary motor cortex to bilateral hand movement. Nature 327:618–620

    Google Scholar 

  • Tanji J, Okano K, Sato KC (1988) Neuronal activity in cortical motor areas related to ipsilateral, contralateral, and bilateral digit movements of the monkey. J Physiol 60:325–343

    CAS  Google Scholar 

  • Viviani P, Perani D, Grassi F, Bettinardi V, Fazio F (1998) Hemispheric asymmetries and bimanual asynchrony in left- and right-handers. Exp Brain Res 120:531–536

    CAS  PubMed  Google Scholar 

  • Walter CB, Swinnen SP (1990) Asymmetric interlimb interference during the performance of a dynamic bimanual task. Brain Cogn 14:185–200

    CAS  PubMed  Google Scholar 

  • Walters MR, Carson RG (1997) A method for calculating the circularity of movement trajectories. J Mot Behav 24:72–84

    Google Scholar 

  • Wasserman EM, Pascual-Leone A, Hallett M (1994) Cortical motor representation of the ipsilateral hand and arm. Exp Brain Res 100:121–132

    PubMed  Google Scholar 

  • Wiesendanger M, Roullier EM, Kazennikov O, Perrig S (1996) Is the supplementary motor area a bilaterally organized system? Adv Neurol 70:85–93

    Google Scholar 

  • Wuyts IJ, Summers JJ, Carson RG, Byblow WD, Semjen A (1996) Attention as a mediating variable in the dynamics of bimanual coordination. Hum Mov Sci 15:877–897

    Article  Google Scholar 

  • Ziemann U, Ishii K, Borgheresi A, Yaseen Z, Battaglia F, Hallett M, Cincotta M, Wassermann EM (1999) Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles. J Physiol 518:895–906

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This research was supported by a Large ARC Grant No. A00000985.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian A. Kagerer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagerer, F.A., Summers, J.J. & Semjen, A. Instabilities during antiphase bimanual movements: are ipsilateral pathways involved?. Exp Brain Res 151, 489–500 (2003). https://doi.org/10.1007/s00221-003-1496-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1496-3

Keywords

Navigation