Skip to main content
Log in

Dexamphetamine effects on separate constructs in the rubber hand illusion test

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Corporeal awareness is an integral component of self-consciousness and is distorted in several neurological and psychiatric disorders. Research regarding the neural underpinnings of corporeal awareness has made much progress recently using the rubber hand illusion (RHI) procedure. However, more studies are needed to investigate the possibility of several dissociable constructs related to the RHI specifically, and corporeal awareness generally.

Objectives

Considering dopamine’s involvement in many perceptual-motor learning processes, as well as its apparent relationship with disorders such as schizophrenia that are linked to body ownership disturbances, we gave 0.45 mg/kg dexamphetamine (a dopamine transporter reverser) to 20 healthy participants to examine the effects of increased dopamine transmission on the RHI.

Methods

The effect of dexamphetamine on separate quantitative constructs underlying RHI were examined including embodiment of rubber hand, loss of ownership of real hand, perception of movement, affect, deafference, and proprioceptive drift. The experiment was a double-blind, placebo-controlled, cross-over design.

Results

Dexamphetamine increased participants’ ratings of embodiment (particularly “ownership”) of the rubber hand and was associated with the experience of loss of ownership of the person’s real hand. There were significant increases from asynchronous to synchronous stroking for the measures of movement and proprioceptive drift after placebo but not dexamphetamine. There were no changes in the measures of other constructs.

Conclusions

These results show a novel pharmacological manipulation of separate constructs of the RHI. This finding may aid in our understanding of disorders that have overlapping disturbances in both dopamine activity and body representations, particularly schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aglioti SM, Fiorio M, Forster B, Tinazzi M (2003) Temporal discrimination of cross-modal and unimodal stimuli in generalized dystonia. Neurology 60:782–785

    PubMed  Google Scholar 

  • Albrecht MA, Martin-Iverson MT, Price GW, Lee J, Iyyalol R (2010) Dexamphetamine reduction of P3a and P3b for auditory but not visual stimuli in healthy participants. J Psychopharmacol. doi:10.1177/0269881110376686

    PubMed  Google Scholar 

  • Almeida Q, Frank J, Roy E, Jenkins M, Spaulding S, Patla A et al (2005) An evaluation of sensorimotor integration during locomotion toward a target in Parkinson’s disease. Neurosci 134:283–293

    Article  CAS  Google Scholar 

  • Andringa G, Drukarch B, Leysen JE, Cools AR, Stoof JC (1999) The alleged dopamine D1 receptor agonist SKF 83959 is a dopamine D1 receptor antagonist in primate cells and interacts with other receptors. Eur J Pharmacol 364:33–41

    Article  PubMed  CAS  Google Scholar 

  • Angrist B, Gershon S (1970) The phenomenology of experimentally induced amphetamine psychosis. Biol Psychiatry 2:95–107

    PubMed  CAS  Google Scholar 

  • Armel KC, Ramachandran VS (2003) Projecting sensations to external objects: evidence from skin conductance response. Proc R Soc Lond B Biol Sci 270:1499–1506

    Article  Google Scholar 

  • Artieda J, Pastor MA, Lacruz F, Obeso JA (1992) Temporal discrimination is abnormal in Parkinson’s disease. Brain 115:199–210

    Article  PubMed  Google Scholar 

  • Arzy S, Overney LS, Landis T, Blanke O (2006) Neural mechanisms of embodiment: asomatognosia due to premotor Cortex damage. Arch Neurol 63:1022–1025

    Article  PubMed  Google Scholar 

  • Bergson C, Mrzljak L, Smiley J, Pappy M, Levenson R, Goldman-Rakic P (1995) Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J Neurosci 15:7821–7836

    PubMed  CAS  Google Scholar 

  • Berlucchi G, Aglioti SM (1997) The body in the brain: neural bases of corporeal awareness. Trends Neurosci 20:560–564

    Article  PubMed  CAS  Google Scholar 

  • Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev 28:309–369

    Article  PubMed  CAS  Google Scholar 

  • Blanke O, Arzy S (2005) The out-of-body experience: disturbed self-processing at the temporo-parietal junction. Neuroscientist 11:16–24

    Article  PubMed  Google Scholar 

  • Blanke O, Metzinger T (2009) Full-body illusions and minimal phenomenal selfhood. Trends in Cognit Sci 13:7–13

    Article  Google Scholar 

  • Botvinick M, Cohen J (1998) Rubber hands ‘feel’ touch that eyes see. Nature 391:756

    Article  PubMed  CAS  Google Scholar 

  • Bromage P, Melzack R (1974) Phantom limbs and the body schema. Can J Anesth 21:267–274

    Article  CAS  Google Scholar 

  • Buhusi CV, Meck WH (2002) Differential effects of methamphetamine and haloperidol on the control of an internal clock. Behav Neurosci 116:291–297

    Article  PubMed  CAS  Google Scholar 

  • Bütefisch CM, Davis BC, Sawaki L, Waldvogel D, Classen J, Kopylev L et al (2002) Modulation of use-dependent plasticity by d-amphetamine. Ann Neurol 51:59–68

    Article  PubMed  CAS  Google Scholar 

  • Castner SA, Williams GV (2007) Tuning the engine of cognition: a focus on NMDA/D1 receptor interactions in prefrontal cortex. Brain Cogni 63:94–122

    Article  Google Scholar 

  • Centonze D, Picconi B, Gubellini P, Bernardi G, Calabresi P (2001) Dopaminergic control of synaptic plasticity in the dorsal striatum. Eur J Neurosci 13:1071–1077

    Article  PubMed  CAS  Google Scholar 

  • Cepeda C, Buchwald NA, Levine MS (1993) Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc Natl Acad Sci U S A 90:9576–9580

    Article  PubMed  CAS  Google Scholar 

  • Cooper SJ, Donald O (2005) Hebb’s synapse and learning rule: a history and commentary. Neurosci Biobehav Rev 28:851–874

    Article  PubMed  Google Scholar 

  • Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58:306–324

    Article  PubMed  CAS  Google Scholar 

  • Corlett P, Honey G, Fletcher P (2007) From prediction error to psychosis: ketamine as a pharmacological model of delusions. J Psychopharmacol 21:238–252

    Article  PubMed  CAS  Google Scholar 

  • Cornil CA, Balthazart J, Motte P, Massotte L, Seutin V (2002) Dopamine activates noradrenergic receptors in the preoptic area. J Neurosci 22:9320–9330

    PubMed  CAS  Google Scholar 

  • Coslett HB, Saffran EM, Schwoebel J (2002) Knowledge of the human body. Neurology 59:357–363

    PubMed  Google Scholar 

  • Crow TJ (1980) Molecular pathology of schizophrenia: more than one disease process? Br Med J 280:66–68

    Article  PubMed  CAS  Google Scholar 

  • Czermak C, Lehofer M, Liebmann PM, Traynor J (2006) [35S]GTP[gamma]S binding at the human dopamine D4 receptor variants hD4.2, hD4.4 and hD4.7 following stimulation by dopamine, epinephrine and norepinephrine. Eur J Pharmacol 531:20–24

    Article  PubMed  CAS  Google Scholar 

  • de Vignemont F (2010) Body schema and body image—pros and cons. Neuropsychologia 48:669–680

    Article  PubMed  Google Scholar 

  • Dinse HR, Ragert P, Pleger B, Schwenkreis P, Tegenthoff M (2003) Pharmacological modulation of perceptual learning and associated cortical reorganization. Science 301:91–94

    Article  PubMed  CAS  Google Scholar 

  • Ehrsson HH (2009) How many arms make a pair? Perceptual illusion of having an additional limb. Perception 38:310

    Article  PubMed  Google Scholar 

  • Ehrsson HH, Spence C, Passingham RE (2004) That’s my hand! Activity in premotor cortex reflects feeling of ownership of a limb. Science 305:875–877

    Article  PubMed  CAS  Google Scholar 

  • Ehrsson HH, Holmes NP, Passingham RE (2005) Touching a rubber hand: feeling of body ownership is associated with activity in multisensory brain areas. J Neurosci 25:10564–10573

    Article  PubMed  CAS  Google Scholar 

  • Ehrsson HH, Wiech K, Weiskopf N, Dolan RJ, Passingham RE (2007) Threatening a rubber hand that you feel is yours elicits a cortical anxiety response. Proc Natl Acad Sci U S A 104:9828–9833

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Suhara T, Nyberg S, Karlsson P, Nakashima Y, Hietala J et al (1997) A PET-study of [11C]FLB 457 binding to extrastriatal D2-dopamine receptors in healthy subjects and antipsychotic drug-treated patients. Psychopharmacol 133:396–404

    Article  CAS  Google Scholar 

  • Farrer C, Frith C (2002) Experiencing oneself vs another person as being the cause of an action: the neural correlates of the experience of agency. Neuroimage 15:596–603

    Article  PubMed  CAS  Google Scholar 

  • Farrer C, Franck N, Georgieff N, Frith C, Decety J, Jeannerod M (2003) Modulating the experience of agency: a positron emission tomography study. Neuroimage 18:324–333

    Article  PubMed  CAS  Google Scholar 

  • Fletcher P, Frith C (2009) Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. Nat Rev Neurosci 10:48–58

    Article  PubMed  CAS  Google Scholar 

  • Foucher J, Lacambre M, Pham B, Giersch A, Elliott M (2007) Low time resolution in schizophrenia: lengthened windows of simultaneity for visual, auditory and bimodal stimuli. Schizophr Res 97:118–127

    Article  PubMed  CAS  Google Scholar 

  • Fox, J (2010) car: companion to applied regression, retrieved from http://CRAN.R-project.org/package=car

  • Gallagher S (2005) How the body shapes the mind. Oxford University Press USA, New York

    Book  Google Scholar 

  • Giersch A, Lalanne L, Corves C, Seubert J, Shi Z, Foucher J et al (2009) Extended visual simultaneity thresholds in patients with schizophrenia. Schizophr Bull 35:816–825

    Article  PubMed  Google Scholar 

  • Goldman-Rakic P, Lidow M, Gallager D (1990) Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex. J Neurosci 10:2125–2138

    PubMed  CAS  Google Scholar 

  • Goldsmith SK, Joyce JN (1996) Dopamine D2 receptors are organized in bands in normal human temporal cortex. Neurosci 74:435–451

    Article  CAS  Google Scholar 

  • Gurden H, Takita M, Jay TM (2000) Essential role of D1 but not D2 receptors in the NMDA receptor-dependent long-term potentiation at hippocampal-prefrontal cortex synapses in vivo. J Neurosci 20:RC106

    PubMed  CAS  Google Scholar 

  • Head H, Holmes G (1911) Sensory disturbances from cerebral lesions. Brain 34:102

    Article  Google Scholar 

  • Hebb DO (1949) The organisation of behaviour. Wiley, New York

    Google Scholar 

  • Hegadoren KM, Greenshaw AJ, Baker GB, Martin-Iverson MT, Lodge B, Soin S (1994) 4-Ethoxyamphetamine: effects on intracranial self-stimulation and in vitro uptake and release of 3 H-dopamine and 3 H-serotonin in the brains of rats. J Psychiatry Neurosci 19:57–62

    PubMed  CAS  Google Scholar 

  • Heginbotham L, Dunwiddie T (1991) Long-term increases in the evoked population spike in the CA1 region of rat hippocampus induced by beta-adrenergic receptor activation. J Neurosci 11:2519–2527

    PubMed  CAS  Google Scholar 

  • Hollerman JR, Schultz W (1998) Dopamine neurons report an error in the temporal prediction of reward during learning. Nat Neurosci 1:304–309

    Article  PubMed  CAS  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Holmes NP, Spence C (2007) Dissociating body image and body schema with rubber hands. Behav Brain Sci 30:211–212

    Article  Google Scholar 

  • Holmes NP, Snijders HJ, Spence C (2006) Reaching with alien limbs: visual exposure to prosthetic hands in a mirror biases proprioception without accompanying illusions of ownership. Percept Psychophys 68:685–701

    Article  PubMed  Google Scholar 

  • Hopkins W, Johnston D (1984) Frequency-dependent noradrenergic modulation of long-term potentiation in the hippocampus. Science 226:350–352

    Article  PubMed  CAS  Google Scholar 

  • Hopkins W, Johnston D (1988) Noradrenergic enhancement of long-term potentiation at mossy fiber synapses in the hippocampus. J Neurophysiol 59:667–687

    PubMed  CAS  Google Scholar 

  • Hosp JA, Pekanovic A, Rioult-Pedotti MS, Luft AR (2011) Dopaminergic projections from midbrain to primary motor cortex mediate motor skill learning. J Neurosci 31:2481–2487

    Article  PubMed  CAS  Google Scholar 

  • Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III–the final common pathway. Schizophr Bull 35:549–562

    Article  PubMed  Google Scholar 

  • Kammers MP, van der Ham I, Dijkerman H (2006) Dissociating body representations in healthy individuals: differential effects of a kinaesthetic illusion on perception and action. Neuropsychologia 44:2430–2436

    Article  PubMed  CAS  Google Scholar 

  • Kammers MP, Verhagen L, Dijkerman HC, Hogendoorn H, De Vignemont F, Schutter DJLG (2009) Is this hand for real? Attenuation of the rubber hand illusion by transcranial magnetic stimulation over the inferior parietal lobule. J Cogn Neurosci 21:1311–1320

    Article  PubMed  Google Scholar 

  • Kapur S (2003) Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry 160:13–23

    Article  PubMed  Google Scholar 

  • Kapur S, Mizrahi R, Li M (2005) From dopamine to salience to psychosis—linking biology, pharmacology and phenomenology of psychosis. Schizophr Res 79:59–68

    Article  PubMed  Google Scholar 

  • Keijsers NLW, Admiraal MA, Cools AR, Bloem BR, Gielen CCAM (2005) Differential progression of proprioceptive and visual information processing deficits in Parkinson’s disease. Eur J Neuroscience 21:239–248

    Article  CAS  Google Scholar 

  • Koek W, Slangen JL (1983) Effects of d-amphetamine and morphine on discrimination: signal detection analysis and assessment of response repetition in the performance deficits. Psychopharmacol 80:125–128

    Article  CAS  Google Scholar 

  • Kubrusly RCC, Ventura ALM, de Melo Reis RA, Serra GCF, Yamasaki EN, Gardino PF et al (2007) Norepinephrine acts as D1-dopaminergic agonist in the embryonic avian retina: late expression of [beta]1-adrenergic receptor shifts norepinephrine specificity in the adult tissue. Neurochem Int 50:211–218

    Article  PubMed  CAS  Google Scholar 

  • Lanau F, Zenner M, Civelli O, Hartman DS (2002) Epinephrine and norepinephrine act as potent agonists at the recombinant human dopamine D4 receptor. J Neurochem 68:804–812

    Article  Google Scholar 

  • Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, D’Souza CD, Erdos J et al (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci U S A 93:9235–9240

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R (1999) Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatry 46:56–72

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, MA (2010) ez: easy analysis and visualization of factorial experiments, http://CRAN.R-project.org/package=ez

  • Lee M, Kim H, Lyoo C (2005) "Off" gait freezing and temporal discrimination threshold in patients with Parkinson disease. Neurology 64:670–674

    PubMed  Google Scholar 

  • Li K, Pickett K, Nestrasil I, Tuite P, Konczak J (2010) The effect of dopamine replacement therapy on haptic sensitivity in Parkinson’s disease. J Neurol 257:1992–1998

    Article  PubMed  CAS  Google Scholar 

  • Linden DEJ (2005) The P300: where in the brain is it produced and what does it tell us? Neuroscientist 11:563–576

    Article  PubMed  CAS  Google Scholar 

  • Ljungberg T, Ungerstedt U (1976) Sensory inattention produced by 6-hydroxydopamine-induced degeneration of ascending dopamine neurons in the brain. Exp Neurol 53:585–600

    Article  PubMed  CAS  Google Scholar 

  • Longo MR, Schüür F, Kammers MP, Tsakiris M, Haggard P (2008) What is embodiment? A psychometric approach. Cognition 107:978–998

    Article  PubMed  Google Scholar 

  • MacNab MW, Foltz EL, Sweitzer J (1985) Evaluation of signal detection theory on the effects of psychotropic drugs on critical flicker-fusion frequency in normal subjects. Psychopharmacol 85:431–435

    Article  CAS  Google Scholar 

  • Martin SJ, Grimwood PD, Morris RGM (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Ann R Neurosci 23:649–711

    Article  CAS  Google Scholar 

  • Meck WH (1986) Affinity for the dopamine D2 receptor predicts neuroleptic potency in decreasing the speed of an internal clock. Pharmacol Biochem Behav 25:1185–1189

    Article  PubMed  CAS  Google Scholar 

  • Molina-Luna K, Pekanovic A, Röhrich S, Hertler B, Schubring-Giese M, Rioult-Pedotti M et al (2009) Dopamine in motor cortex is necessary for skill learning and synaptic plasticity. PLoS ONE 4:e7082

    Article  PubMed  CAS  Google Scholar 

  • Morgan HL, Turner DC, Corlett P, Absalom AR, Adapa R, Arana FS et al (2010) Exploring the impact of the ketamine on the experience of illusory body ownership. Biol Psychiatry. doi:10.1016/j.biopsych.2010.07.032

    Google Scholar 

  • Newman-Tancredi A, Audinot-Bouchez V, Gobert A, Millan MJ (1997) Noradrenaline and adrenaline are high affinity agonists at dopamine D4 receptors. Eur J Pharmacol 319:379–383

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenhuis S, Aston-Jones G, Cohen JD (2005) Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychol Bull 131:510–532

    Article  PubMed  Google Scholar 

  • Nitsche MA, Grundey J, Liebetanz D, Lang N, Tergau F, Paulus W (2004) Catecholaminergic consolidation of motor cortical neuroplasticity in humans. Cereb Cortex 14:1240–1245

    Article  PubMed  Google Scholar 

  • Nitsche MA, Lampe C, Antal A, Liebetanz D, Lang N, Tergau F et al (2006) Dopaminergic modulation of long-lasting direct current-induced cortical excitability changes in the human motor cortex. Eur J Neurosci 23:1651–1657

    Article  PubMed  Google Scholar 

  • Paillard J (1999) Body schema and body image—a double dissociation, in motor control today and tomorrow (Gantchev G, Mori S and Massion J eds). Academic, Sofia

    Google Scholar 

  • Paqueron X, Leguen M, Rosenthal D, Coriat P, Willer JC, Danziger N (2003) The phenomenology of body image distortions induced by regional anaesthesia. Brain 126:702–712

    Article  PubMed  CAS  Google Scholar 

  • Peled A, Ritsner M, Hirschmann S, Geva AB, Modai I (2000) Touch feel illusion in schizophrenic patients. Biol Psychiatry 48:1105–1108

    Article  PubMed  CAS  Google Scholar 

  • Philips SR, Robson AM, Boulton AA (1982) Unstimulated and amphetamine-stimulated release of endogenous noradrenaline and dopamine from rat brain in vivo. J Neurochem 38:1106–1110

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro, J, Bates, D, DebRoy, S, Sarkar, D & R Core Team (2009) nlme: linear and nonlinear mixed effects models, http://cran.r-project.org/package=nlme

  • Rammsayer TH (1993) On dopaminergic modulation of temporal information processing. Biol Psychol 36:209–222

    Article  PubMed  CAS  Google Scholar 

  • Rammsayer TH (1999) Neuropharmacological evidence for different timing mechanisms in humans. Q J Exp Psychol B 52:273–286

    Article  PubMed  CAS  Google Scholar 

  • Rammsayer TH (2009) Effects of pharmacologically induced dopamine-receptor stimulation on human temporal information processing. NeuroQuantology 7:103–113

    Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing, r foundation for statistical computing, Vienna, Austria. http://www.R-project.org

  • Reynolds JNJ, Hyland BI, Wickens JR (2001) A cellular mechanism of reward-related learning. Nature 413:67–70

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev 18:247–291

    Article  PubMed  CAS  Google Scholar 

  • Roitman MF, van Dijk G, Thiele TE, Bernstein IL (2001) Dopamine mediation of the feeding response to violations of spatial and temporal expectancies. Behav Brain Res 122:193–199

    Article  PubMed  CAS  Google Scholar 

  • Schneider JS, Diamond SG, Markham CH (1987) Parkinson’s disease: sensory and motor problems in arms and hands. Neurology 37:951–956

    PubMed  CAS  Google Scholar 

  • Schwoebel J, Coslett HB (2005) Evidence for multiple, distinct representations of the human body. J Cognit Neurosci 17:543–553

    Article  Google Scholar 

  • Seamans JK, Floresco SB, Phillips AG (1998) D1 receptor modulation of hippocampal-prefrontal cortical circuits integrating spatial memory with executive functions in the rat. J Neurosci 18:1613–1621

    PubMed  CAS  Google Scholar 

  • Seeman P (1987) Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse 1:133–152

    Article  PubMed  CAS  Google Scholar 

  • Seitz AR, Dinse HR (2007) A common framework for perceptual learning. Curr Opin Neurobiol 17:148–153

    Article  PubMed  CAS  Google Scholar 

  • Shen W, Flajolet M, Greengard P, Surmeier DJ (2008) Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321:848–851

    Article  PubMed  CAS  Google Scholar 

  • Spence SA, Brooks DJ, Hirsch SR, Liddle PF, Meehan J, Grasby PM (1997) A PET study of voluntary movement in schizophrenic patients experiencing passivity phenomena (delusions of alien control). Brain 120:1997–2011

    Article  PubMed  Google Scholar 

  • Strube MJ, Bobko P (1989) Testing hypotheses about ordinal interactions: simulations and further comments. J Appl Psychol 74:247–252

    Article  Google Scholar 

  • Suppa A, Iezzi E, Conte A, Belvisi D, Marsili L, Modugno N et al (2010) Dopamine influences primary motor cortex plasticity and dorsal premotor-to-motor connectivity in Parkinson’s Disease. Cereb Cortex 20:2224–2233

    Article  PubMed  CAS  Google Scholar 

  • Tsakiris M (2010) My body in the brain: a neurocognitive model of body-ownership. Neuropsychologia 48:703–712

    Article  PubMed  Google Scholar 

  • Tsakiris M, Prabhu G, Haggard P (2006) Having a body versus moving your body: how agency structures body-ownership. Conscious Cogn 15:423–432

    Article  PubMed  Google Scholar 

  • Tsakiris M, Hesse MD, Boy C, Haggard P, Fink GR (2007a) Neural signatures of body ownership: a sensory network for bodily self-consciousness. Cereb Cortex 17:2235–2244

    Article  PubMed  Google Scholar 

  • Tsakiris M, Schütz-Bosbach S, Gallagher S (2007b) On agency and body-ownership: phenomenological and neurocognitive reflections. Conscious Cogn 16:645–660

    Article  PubMed  Google Scholar 

  • Tsakiris M, Costantini M, Haggard P (2008) The role of the right temporo-parietal junction in maintaining a coherent sense of one’s body. Neuropsychologia 46:3014–3018

    Article  PubMed  Google Scholar 

  • Vallar G, Papagno C (2003) Pierre Bonnier’s (1905) cases of bodily “aschématie”. Classic cases in neuropsychology 2:147–170

    Google Scholar 

  • Waelti P, Dickinson A, Schultz W (2001) Dopamine responses comply with basic assumptions of formal learning theory. Nature 412:43–48

    Article  PubMed  CAS  Google Scholar 

  • Waters FA, Badcock JC (2010) First-rank symptoms in schizophrenia: reexamining mechanisms of self-recognition. Schizophr Bull 36:510–517

    Article  PubMed  Google Scholar 

  • Waters F, Jablensky A (2009) Time discrimination deficits in schizophrenia patients with first-rank (passivity) symptoms. Psychiatry Res 167:12–20

    Article  PubMed  Google Scholar 

  • Xu T, Yao W (2010) D1 and D2 dopamine receptors in separate circuits cooperate to drive associative long-term potentiation in the prefrontal cortex. Proc Natl Acad Sci U S A 107:16366–16371

    Article  PubMed  CAS  Google Scholar 

  • Zampini M, Moro V, Aglioti SM (2004) Illusory movements of the contralesional hand in patients with body image disorders. J Neurol Neurosurg Psychiatry 75:1626–1628

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by a National Health and Medical Research Council grant (ID: 254619). Matthew Albrecht is the recipient of a Clinical Neurophysiology supplementary scholarship from the Department of Neurophysiology, North Metropolitan Area Health Service—Mental Health and the School of Medicine and Pharmacology of the University of Western Australia. Flavie Waters is recipient of Australian National Health and Medical Research Council (NHMRC) grants (ID: 404117; 634328).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew A. Albrecht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albrecht, M.A., Martin-Iverson, M.T., Price, G. et al. Dexamphetamine effects on separate constructs in the rubber hand illusion test. Psychopharmacology 217, 39–50 (2011). https://doi.org/10.1007/s00213-011-2255-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2255-y

Keywords

Navigation