Skip to main content
Log in

The supramammillo–septal–hippocampal pathway mediates sensorimotor gating impairment and hyperlocomotion induced by MK-801 and ketamine in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Ketamine or MK-801 induced sensorimotor gating deficit, but the underlying neural mechanisms are not completely known. We have previously demonstrated that the medial septum (MS) mediated the phencyclidine-induced deficit in prepulse inhibition of the acoustic startle (PPI) in rats.

Objectives

We investigated the involvement of the supramammillary area (SUM) to MS pathway in PPI impairment and behavioral hyperlocomotion induced by MK-801or ketamine in rats and correlated the behavioral deficits with hippocampal gamma wave increase.

Materials and methods

Ketamine (6 mg/kg, s.c.) or MK-801 (0.5 mg/kg, i.p.) was administered after infusion of saline or the GABAA receptor agonist, muscimol (0.25 μg), into the MS or SUM. Locomotion, PPI, and hippocampal electroencephalogram (EEG) were recorded.

Results

MK-801 or ketamine induced PPI impairment and behavioral hyperlocomotion, accompanied by an increase in hippocampal gamma waves (30–100 Hz). The changes in behavior and gamma waves induced by ketamine or MK–801 were antagonized by pre-infusion of muscimol, but not saline, into the SUM or MS. Infusion of muscimol into the SUM alone did not significantly affect PPI, but it suppressed spontaneous locomotor behavior and hippocampal EEG. Infusion of ionotropic glutamate receptor antagonists into the MS did not affect the PPI deficit or the gamma wave increase after MK-801.

Conclusions

A non-glutamatergic component of the supramammillo–septal pathway mediates the hyperlocomotion and the deficits in PPI induced by MK-801 or ketamine. Inactivation of the MS or SUM normalized both the hippocampal gamma waves and the behavioral deficits (PPI impairment and hyperlocomotion).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abel KM, Allin MPG, Hemsley DR, Geyer MA (2003) Low dose ketamine increases prepulse inhibition in healthy men. Neuropharmacology 44:729–737

    Article  PubMed  CAS  Google Scholar 

  • Akpinar S, Itil TM, Holden JM, Hsu W (1993) Qualitative and quantitative EEG changes of intramuscular thiothixene and trifluoperazine in chronic schizophrenia. Dis Nerv Syst 33:40–45

    Google Scholar 

  • Amaral DG, Kurz J (1985) An analysis of the origins of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat. J Comp Neurol 240:37–59

    Article  PubMed  CAS  Google Scholar 

  • Bakshi VP, Swerdlow NR, Geyer MA (1994) Clozapine antagonizes phencyclidine-induced deficits in sensorimotor gating of the startle response. J Pharmacol Exp Ther 271:787–794

    PubMed  CAS  Google Scholar 

  • Baldeweg T, Spence S, Hirsch S, Gruzelier J (1998) γ-band electroencephalographic oscillations in a patient with somatic hallucinations. Lancet 352:620–621

    Article  PubMed  CAS  Google Scholar 

  • Bast T, Feldon J (2003) Hippocampal modulation of sensorimotor process. Prog Neurobiol 70:319–345

    Article  PubMed  CAS  Google Scholar 

  • Benes FM, Wickramasinghe R, Vincent SL, Khan Y, Todtenkopf M (1997) Uncoupling of GABAA and benzodiazepine receptor binding activity in the hippocampal formation of schizophrenic brain. Brain Res 755:121–129

    Article  PubMed  CAS  Google Scholar 

  • Bland BH, Trepel C, Oddie SD, Kirk IJ (1996) Intraseptal microinfusion of muscimol: effects on hippocampal formation theta field activity and phasic theta-on cell discharges. Exp Neurol 138:286–297

    Article  PubMed  CAS  Google Scholar 

  • Borhegyi Z, Magloczky Z, Acsady L, Freund TF (1998) The suppramammillary nucleus innervates cholinergic and GABAergic neurons in the medial septum–diagonal band of broca complex. Neuroscience 82:1053–1065

    Article  PubMed  CAS  Google Scholar 

  • Brudzynski SM, Gibson CJ (1997) Release of dopamine in the nucleus accumbens caused by stimulation of the subiculum in freely moving rats. Brain Res Bull 42:303–308

    Article  PubMed  CAS  Google Scholar 

  • Busatto GF, Pilowsky LS, Costa DC, Ell PJ, David AS, Lucey JV, Kerwin RW (1995) Correlation between reduced in vivo benzodiazepine receptor binding and severity of psychotic symptoms in schizophrenia. Am J Psychiatr 154:56–63

    Google Scholar 

  • Buzsaki G (2002) Theta oscillations in the hippocampus. Neuron 33:325–340

    Article  PubMed  CAS  Google Scholar 

  • Canal NM, Gourevitch R, Sandner G (2001) Non-monotonic dependency of PPI on temporal parameters: differential alteration by ketamine and MK-801 as opposed to apomorphine and DOI. Psychopharmacology156:169–176

    Article  PubMed  CAS  Google Scholar 

  • Clementz BA, Blumenfeld LD, Cobb S (1997) The gamma band response may account for poor P50 suppression in schizophrenia. Neuroreport 8:3889–3893

    Article  PubMed  CAS  Google Scholar 

  • Dubovsky SL (1992) Psychopharmacological treatment in neuropsychiatry. In: Yudofsky SC, Hales RE (eds) The America psychiatric press textbook of neuropsychiatry, 2nd edn. American Psychiatric, Washington, DC, pp 663–701

    Google Scholar 

  • Dutar P, Bassant M, Senut M, Lamour Y (1995) The septohippocampal pathway: structure and function of a central cholinergic system. Physiol Rev 75:393–427

    PubMed  CAS  Google Scholar 

  • Fendt M, Li L, Yeomans JS (2001) Brain stem circuits mediating prepulse inhibition of the startle reflex. Psychopharmacology 156:216–224

    Article  PubMed  CAS  Google Scholar 

  • Freund TF, Antal M (1988) GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature 336:170–173

    Article  PubMed  CAS  Google Scholar 

  • Gonzalo-ruiz A, Alonso A, Sanz JM, Llinas RR (1992) Afferent projections to the mammillary complex of the rat, with special reference to those from surrounding hypothalamic regions. J Comp Neurol 321:277–299

    Article  PubMed  CAS  Google Scholar 

  • Gonzalo-ruiz A, Morte L, Flecha JM, Sanz JM (1999) Neurotransmitter characteristics of neurons projecting to the supramammillary nucleus of the rat. Anat Embryol 200:377–392

    Article  PubMed  CAS  Google Scholar 

  • Halberstadt AL (1995) The phencyclidine–glutamate model of schizophrenia. Clin Neuropharmacol 19:237–249

    Article  Google Scholar 

  • Harrison PJ, Malaughlin D, Kerwin RW (1991) Decreased hippocampal expression of a glutamate receptor gene in schizophrenia. Lancet 337:450–452

    Article  PubMed  CAS  Google Scholar 

  • Heckers S, Konradi C (2002) Hippocampal neurons in schizophrenia. J Neural Transm 109:891–905

    Article  PubMed  CAS  Google Scholar 

  • Hoffman DC, Donovan H, Cassella JV (1993) The effects of haloperidol and clozapine in the disruption of sensorimotor gating induced by the noncompetitive glutamate antagonist MK-801. Psychopharmacology 111:339–344

    Article  PubMed  CAS  Google Scholar 

  • Itil TM (1982) The use of electroencephalography in the practice of psychiatry. Psychosomatics 23:799–813

    PubMed  CAS  Google Scholar 

  • Itil TM, Itil KZ (1986) The significance of pharmacodynamic measures in the assessment of bioavailability and bioequivalence of psychotropic drugs using CEEG and dynamic brain mapping. J Clin Psychiatry 47:S20–S27

    Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatr 148:1301–1308

    PubMed  CAS  Google Scholar 

  • Jones CK, Shannon HE (1998) Bilateral lesions of the laterodorsal tegmental nucleus disrupt prepulse inhibition of the acoustic startle reflex in rats. Schizophr Res 29:199

    Article  Google Scholar 

  • Keith VA, Mansbach RS, Geyer MA (1991) Failure of haloperidol to block the effects of phencyclidine and dizoclipine on prepulse inhibition of startle. Biol Psychiatry 30:557–566

    Article  PubMed  CAS  Google Scholar 

  • Kerwin R, Patel S, Meldrum B (1990) Quantitative autoradiographic analysis of glutamate binding sites in the hippocampal formation in normal and schizophrenic brain post mortem. Neuroscience 39:25–32

    Article  PubMed  CAS  Google Scholar 

  • Kinney GG, Wilkinson LO, Saywell KL, Tricklebank MD (1999) Rat strain differences in the ability to disrupt sensorimotor gating are limited to the dopaminergic system, specific to prepulse inhibition, and unrelated to changes in startle amplitude or nucleus accumbens dopamine receptor sensitivity. J Neurosci 19:5644–5653

    PubMed  CAS  Google Scholar 

  • Kirk IJ, Oddie SD, Konopacki J, Bland BH (1996) Evidence for differential control of posterior hypothalamic supramammilary, and medial mammillary theta-related cellular discharge by ascending and descending pathways. J Neurosci 16:5547–5554

    PubMed  CAS  Google Scholar 

  • Kiss J, Csaki A, Bokor H, Shanabrough M, Leranth C (2000) The supramammillo–hippocampal and supramammillo–septal glutamatergic/aspartatergic projections in the rat: a combined [3H] d-aspartate autoradiographic and immunohistochemical study. Neuroscience 97:657–669

    Article  PubMed  CAS  Google Scholar 

  • Koch M (1996) The septohippocampal system is involved in prepulse inhibition of the startle response in rats. Behav Neurosci 110:468–477

    Article  PubMed  CAS  Google Scholar 

  • Koch M, Kungel M, Herbert H (1993) Cholinergic neurons in the pedunculopontine tegmental nucleus are involved in the mediation of prepulse inhibition of the acoustic startle response in the rat. Exp Brain Res 97:71–82

    Article  PubMed  CAS  Google Scholar 

  • Kretschmer B, Koch M (1998) The ventral pallidum mediates disruption of prepulse inhibition of the acoustic startle response induced by dopamine agonists, but not by NMDA antagonists. Brain Res 798:204–210

    Article  PubMed  CAS  Google Scholar 

  • Krnjevic K, Ropert N, Casullo J (1988) Septohippocampal disinhibition. Brain Res 438:182–192

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, Karper, LP, Seibyl JP, Freeman, GK, Delaney R, Bremner JD et al (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Arch Gen Psychiatry 51:199–214

    PubMed  CAS  Google Scholar 

  • Lahti AC, Holcomb HH, Medoff DR, Tamminga CA (1995) Ketamine activates psychosis and alters limbic blood flow in schizophrenia. Neuroreport 6:869–872

    Article  PubMed  CAS  Google Scholar 

  • Lee K-H, Willams LM, Breakspear M, Gordon E (2003) Synchronous gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia. Brains Res Rev 41:57–78

    Article  Google Scholar 

  • Legault M, Rompre P-P, Wise RA (2000) Chemical stimulation of ventral hippocampus elevates nucleus accumbens dopamine by activating dopaminergic neurons of the ventral tegmental area. J Neurosci 20:1635–1642

    PubMed  CAS  Google Scholar 

  • Leranth C, Kiss J (1996) A population of supramammillary area calretinin neurons terminating on medial septal area cholinergic and lateral septal area calbindin-containing cells are aspartate/glutamatergic. J Neurosci 16:7699–7710

    PubMed  CAS  Google Scholar 

  • Leung LS (1982) Nonlinear feedback model of neuronal populations in hippocampal CA1 region. J Neurophysiol 47:848–868

    Google Scholar 

  • Leung LS, Desborough KA (1987) APV, an N-methyl-d-aspartate receptor antagonist, blocks the hippocampal theta rhythm in behaving rats. Brain Res 463:148–152

    Article  Google Scholar 

  • Leung LS, Shen B (1993) Long-term potentiation in hippocampal CA1: effects of afterdischarges, NMDA antagonists and anticonvulsants. Exp Neurol 119:205–214

    Article  PubMed  CAS  Google Scholar 

  • Leung LS, Shen B (1999) LTP at apical and basal synapses of CA1 in awake rats has different sensitivity to NMDA receptor antagonists. Hippocampus 9:617–630

    Article  PubMed  CAS  Google Scholar 

  • Leung LS, Shen B (2004) Glutamatergic synaptic transmission participates in generating the hippocampal EEG. Hippocampus 14:510–525

    Article  PubMed  CAS  Google Scholar 

  • Leung LS, Lopes da Silva FH, Wadman W (1982) Spectral characteristics of the hippocampal EEG in the freely moving rat. Electroenceph Clin Neurophysiol 54:203–219

    Article  PubMed  CAS  Google Scholar 

  • Leung LS, Martin LA, Stewart DJ (1994) Hippocampal theta rhythm in behaving rats following ibotenic acid lesion of the septum. Hippocampus 4:136–147

    Article  PubMed  CAS  Google Scholar 

  • Lisman JE, Idiart MAP (1995) Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science 267:1512–1514

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Alreja M (1997) Atypical antipsychotics block 5-HT mediated excitatory effects of serotonin in septohippocampal neurons in the rat. Neuroscience 79:369–382

    Article  PubMed  CAS  Google Scholar 

  • Lorrain DS, Schaffhauser H, Campbell UC, Baccei CS, Correa LD, Rowe B, Rodriguez DE, Anderson JJ, Varney MA, Pinkerton AB, Vernier JM, Bristow LJ (2003) Group II mGlu receptor activation suppresses norepinephrine release in the ventral hippocampus and locomotor responses to acute ketamine challenge. Neuropsychopharmacology 28:1622–1632

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Leung LS (1999) Medial septum mediates the increase in post-ictal behaviors and hippocampal gamma waves after an electrically induced seizure. Brain Res 833:51–57

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Leung LS (2000) Relation between hippocampal γ waves and behavioral disturbances induced by phencyclidine and methamphetamine. Behav Brain Res 111:1–11

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Brudzynski SM, Leung LS (1996) Involvement of the nucleus accumbens–ventral pallidal pathway in postictal behavior induced by a hippocampal afterdischarge in rats. Brain Res 739:26–35

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Ye N, Lange N, Cohen BM (2003) Dynorphinergic GABA neurons are a target of both typical and atypical antipsychotic drugs in the nucleus accumbens shell, central amygdaloid nucleus and thalamic central medial nucleus. Neuroscience 121:991–998

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Shen B, Rajakumar N, Leung LS (2004) The medial septum mediates impairment of prepulse inhibition of acoustic startle induced by a hippocampal seizure or phencyclidine. Behav Brain Res 155:153–166

    Article  PubMed  Google Scholar 

  • Mathe JM, Nomikos GG, Blakeman KH, Svensson TH (1999) Differential actions of dizocilpine (MK-801) on the mesolimbic and mesocortical dopamine systems: role of neuronal activity. Neuropharmacology 38:121–128

    Article  PubMed  CAS  Google Scholar 

  • Miller DW, Abercrombie ED (1996) Effects of MK-801 on spontaneous and amphetamine stimulated dopamine release in stratum measured with in vivo microdialysis in awake rats. Brain Res Bull 40:57–62

    Article  PubMed  CAS  Google Scholar 

  • Mogenson GJ, Brudzynski SM, Wu M, Yang CR, Yim CCY (1993) From motivation to action: a review of dopaminergic regulation of limbic–nucleus accumbens–ventral pallidum–pedunculopontine nucleus circuitries involved in limbic–motor integration. In: Kalivas PW, Barnes CD (eds) Limbic motor circuits and neuropsychiatry. CRC, Boca Raton, pp 193–225

    Google Scholar 

  • Monaghan DT, Yao D, Olverman HJ, Wtkins JC, Cotman CW (1984) Autoradiography of D2-[3H]amino-5-phosphonopentanoate binding sites in rat brain. Neurosci Lett 52:253–258

    Article  PubMed  CAS  Google Scholar 

  • Moghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17:2921–2927

    PubMed  CAS  Google Scholar 

  • Olney JW, Farber NB (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52:998–1007

    PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic, Sydney

    Google Scholar 

  • Perry TL, Kish SJ, Buchanan J et al (1979) γ-aminobutyric acid deficiency in brain of schizophrenic patients. Lancet 1:237–239

    Article  PubMed  CAS  Google Scholar 

  • Sainati SM, Lorens SA (1982) Intra-raphe muscimol induced hyperactivity depends on ascending serotonin projections. Pharmacol Biochem Behav 17:973–986

    Article  PubMed  CAS  Google Scholar 

  • Saletu B, Saletu M, Itil TM, Marasa J (1972) The relationship between somatosensory evoked potential and quantitatively analyzed EEG during psychotropic drug treatment. Psychophysiology 9:276

    Google Scholar 

  • Serafetinides EA, Willis D, Clark ML (1972) EEG dose response relationships of chlorpromazine in chronic schizophrenia: the effects on the various rhythms and on alpha blocking. Biol Psychiatry 4:251–256

    PubMed  CAS  Google Scholar 

  • Sinnamon HM, Jassen AK, Ilch C (2000) Hippocampal theta activity and facilitated locomotor stepping produced by GABA injections in the midbrain raphe region. Behav Brain Res 107:93–103

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Geyer MA (1990) GABAergic projection from nucleus accumbens to ventral pallidum mediates dopamine-induced sensorimotor gating deficits of acoustic startle in rats. Brain Res 532:146–150

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Geyer MA (1993) Prepulse inhibition of acoustic startle in rats after lesions of the pedunculopontine tegmental nucleus. Behav Neurosci 107:104–117

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Bakshi V, Waikar M, Taaid N, Geyer MA (1998) Seroquel, clozapine and chlorpromazine restore sensorimotor gating in ketamine-treated rats. Psychopharmacology 140:75–80

    Article  PubMed  CAS  Google Scholar 

  • Tsai G, Passani, LA, Slusher BS, Carter R, Baer L, Kleinman JE, Coyle JT (1995) Abnormal excitatory neurotransmitter metabolism in schizophrenic brains. Arch Gen Psychiatry 52:829–836

    PubMed  CAS  Google Scholar 

  • Vanderwolf CH, Kramis R, Gillespie LA, Bland BH (1975) Hippocampal rhythmic slow activity and neocortical low voltage fast activity: relations to behavior. In: Isaacson RL, Pribram KH (eds). The hippocampus, vol 2. Plenum, New York, pp 101–128

    Google Scholar 

  • Vertes RP (1992) PHA-L analysis of projections from the supramammillary nucleus in the rat. J Comp Neurol 326:595–622

    Article  PubMed  CAS  Google Scholar 

  • Vertes RP (2005) Hippocampal theta rhythm: a tag for short-term memory. Hippocampus 15:923–935

    Article  PubMed  CAS  Google Scholar 

  • Vertes RP, Martin GF (1988) Autoradiographic analysis of ascending projections from the pontine and mesencephalic reticular formation and the median raphe nucleus in the rat. J Comp Neurol 275:511–541

    Article  PubMed  CAS  Google Scholar 

  • Vollenweider FX, Umbricht, D, Geyer MA, Hell D (2000) Effects of NMDA antagonists and 5-HT2a antagonists on prepulse inhibition in human volunteers. Schizophr Res 41:147

    Article  Google Scholar 

  • Whittington MA, Traub RD, Jefferys JGR (1995) Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373:612–615

    Article  PubMed  CAS  Google Scholar 

  • Yang PB, Swann AC, Dafny N (2002) Valproate prevents the induction and expression of MK-801 sensitization. Brain Res 954:151–159

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was financially supported by CIHR 15685 and NSERC grants. We thank B. Shen for technical assistance and J. Long for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyi Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, J., Leung, L.S. The supramammillo–septal–hippocampal pathway mediates sensorimotor gating impairment and hyperlocomotion induced by MK-801 and ketamine in rats. Psychopharmacology 191, 961–974 (2007). https://doi.org/10.1007/s00213-006-0667-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0667-x

Keywords

Navigation