Skip to main content
Log in

Conditional CRF receptor 1 knockout mice show altered neuronal activation pattern to mild anxiogenic challenge

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Regional-specific corticotropin-releasing factor receptor 1 (CRF-R1) knockout mice have been generated recently as a tool to dissociate CNS functions modulated by this receptor. In these mice, CRF-R1 function is postnatally inactivated in the anterior forebrain including limbic brain structures but not in the pituitary leading to normal activity of the hypothalamic–pituitary–adrenocortical (HPA) axis under basal conditions and reduced anxiety-related behavior in the light–dark box and the elevated plus maze (EPM) as compared to wild-type (WT) mice (Müller et al., Nat Neurosci 6:1100–1107, 2003).

Objective

To identify neurobiological correlates underlying this reduced anxiety-like behavior, the expression of c-Fos, an established marker for neuronal activation, which was examined in response to a mild anxiogenic challenge.

Materials and methods

Mice were placed for 10 min on the open arm (OA) of the EPM, and regional c-Fos expression was investigated by immunohistochemistry.

Results

OA exposure enhanced c-Fos expression in both conditional CRF-R1 knockout and WT mice in a number of brain areas (39 of 55 quantified), including cortical, limbic, thalamic, hypothalamic, and hindbrain regions. The c-Fos response in conditional CRF-R1 knockout animals was reduced in a restricted subset of activated neurons (4 out of 39 regions) located in the medial amygdala, ventral lateral septum, prelimbic cortex, and dorsomedial hypothalamus.

Conclusions

These results underline the importance of limbic CRF-R1 in modulating anxiety-related behavior and suggest that reduced neuronal activation in the identified limbic and hypothalamic key structures of the anxiety circuitry may mediate or contribute to the anxiolytic-like phenotype observed in mice with region-specific deletion of forebrain CRF-R1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilera G, Nikodemova M, Wynn PC, Catt KJ (2004) Corticotropin releasing hormone receptors: two decades later. Peptides 25:319–329

    Article  PubMed  CAS  Google Scholar 

  • Beckett SR, Duxon MS, Aspley S, Marsden CA (1997) Central c-fos expression following 20 kHz/ultrasound induced defence behaviour in the rat. Brain Res Bull 42:421–426

    Article  PubMed  CAS  Google Scholar 

  • Bittencourt JC, Sawchenko PE (2000) Do centrally administered neuropeptides access cognate receptors?: an analysis in the central corticotropin-releasing factor system. J Neurosci 20:1142–1156

    PubMed  CAS  Google Scholar 

  • Burow A, Day HE, Campeau S (2005) A detailed characterization of loud noise stress: intensity analysis of hypothalamo-pituitary–adrenocortical axis and brain activation. Brain Res 1062:63–73

    Article  PubMed  CAS  Google Scholar 

  • Campeau S, Watson SJ (1997) Neuroendocrine and behavioral responses and brain pattern of c-fos induction associated with audiogenic stress. J Neuroendocrinol 9:577–588

    Article  PubMed  CAS  Google Scholar 

  • Chalmers DT, Lovenberg TW, De Souza EB (1995) Localization of novel corticotropin-releasing factor receptor (CRF2) MRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor MRNA expression. J Neurosci 15:6340–6350

    PubMed  CAS  Google Scholar 

  • Chen X, Herbert J (1995) Regional changes in c-fos expression in the basal forebrain and brainstem during adaptation to repeated stress: correlations with cardiovascular, hypothermic and endocrine responses. Neuroscience 64:675–685

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Brunson KL, Müller MB, Cariaga W, Baram TZ (2000) Immunocytochemical distribution of corticotropin-releasing hormone receptor type-1 (CRF(1))-like immunoreactivity in the mouse brain: light microscopy analysis using an antibody directed against the C-terminus. J Comp Neurol 420:305–323

    Article  PubMed  CAS  Google Scholar 

  • Chung KK, Martinez M, Herbert J (1999) Central serotonin depletion modulates the behavioural, endocrine and physiological responses to repeated social stress and subsequent c-fos expression in the brains of male rats. Neuroscience 92:613–625

    Article  PubMed  CAS  Google Scholar 

  • Dayas CV, Buller KM, Crane JW, Xu Y, Day TA (2001) Stressor categorization: acute physical and psychological stressors elicit distinctive recruitment patterns in the amygdala and in medullary noradrenergic cell groups. Eur J Neurosci 14:1143–1152

    Article  PubMed  CAS  Google Scholar 

  • de Kloet ER, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475

    Article  PubMed  Google Scholar 

  • De Souza EB (1995) Corticotropin-releasing factor receptors: physiology, pharmacology, biochemistry and role in central nervous system and immune disorders. Psychoneuroendocrinology 20:789–819

    Article  PubMed  Google Scholar 

  • Duncan GE, Knapp DJ, Breese GR (1996) Neuroanatomical characterization of Fos induction in rat behavioral models of anxiety. Brain Res 713:79–91

    Article  PubMed  CAS  Google Scholar 

  • Ebner K, Rupniak NM, Saria A, Singewald N (2004) Substance P in the medial amygdala: emotional stress-sensitive release and modulation of anxiety-related behavior in rats. Proc Natl Acad Sci USA 101:4280–4285

    Article  PubMed  CAS  Google Scholar 

  • Emmert MH, Herman JP (1999) Differential forebrain c-fos mRNA induction by ether inhalation and novelty: evidence for distinctive stress pathways. Brain Res 845:60–67

    Article  PubMed  CAS  Google Scholar 

  • Ferguson JN, Aldag JM, Insel TR, Young LJ (2001) Oxytocin in the medial amygdala is essential for social recognition in the mouse. J Neurosci 21:8278–8285

    PubMed  CAS  Google Scholar 

  • Forestiero D, Manfrim CM, Guimaraes FS, de Oliveira RM (2006) Anxiolytic-like effects induced by nitric oxide synthase inhibitors microinjected into the medial amygdala of rats. Psychopharmacology (Berl) 184:166–172

    Article  CAS  Google Scholar 

  • Franklin KBG, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic, San Diego, CA

    Google Scholar 

  • Graeff FG, Silveira MC, Nogueira RL, Audi EA, Oliveira RM (1993) Role of the amygdala and periaqueductal gray in anxiety and panic. Behav Brain Res 58:123–131

    Article  PubMed  CAS  Google Scholar 

  • Gray JA, McNaughton N (2003) The neuropsychology of anxiety. Oxford University Press, New York

    Google Scholar 

  • Griebel G, Perrault G, Sanger DJ (1998) Characterization of the behavioral profile of the non-peptide CRF receptor antagonist CP-154,526 in anxiety models in rodents. Comparison with diazepam and buspirone. Psychopharmacology (Berl) 138:55–66

    Article  CAS  Google Scholar 

  • Hebb AL, Zacharko RM, Gauthier M, Trudel F, Laforest S, Drolet G (2004) Brief exposure to predator odor and resultant anxiety enhances mesocorticolimbic activity and enkephalin expression in CD-1 mice. Eur J Neurosci 20:2415–2429

    Article  PubMed  Google Scholar 

  • Heinrichs SC, Lapsansky J, Lovenberg TW, De Souza EB, Chalmers DT (1997) Corticotropin-releasing factor CRF1, but not CRF2, receptors mediate anxiogenic-like behavior. Regul Pept 71:15–21

    Article  PubMed  CAS  Google Scholar 

  • Hinks GL, Brown P, Field M, Poat JA, Hughes J (1996) The anxiolytics CI-988 and chlordiazepoxide fail to reduce immediate early gene mRNA stimulation following exposure to the rat elevated X-maze. Eur J Pharmacol 312:153–161

    Article  PubMed  CAS  Google Scholar 

  • Hoffman GE, Lyo D (2002) Anatomical markers of activity in neuroendocrine systems: are we all ‘Fos-ed out’? J Neuroendocrinol 14:259–268

    Article  PubMed  CAS  Google Scholar 

  • Holsboer F (1999) The rationale for corticotropin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety. J Psychiatr Res 33:181–214

    Article  PubMed  CAS  Google Scholar 

  • Hughes P, Dragunow M (1995) Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. Pharmacol Rev 47:133–178

    PubMed  CAS  Google Scholar 

  • Imaki T, Shibasaki T, Hotta M, Demura H (1993) Intracerebroventricular administration of corticotropin-releasing factor induces c-fos mRNA expression in brain regions related to stress responses: comparison with pattern of c-fos mRNA induction after stress. Brain Res 616:114–125

    Article  PubMed  CAS  Google Scholar 

  • Imaki T, Shibasaki T, Wang XQ, Demura H (1995) Intracerebroventricular administration of corticotropin-releasing factor antagonist attenuates c-fos MRNA expression in the paraventricular nucleus after stress. Neuroendocrinology 61:445–452

    Article  PubMed  CAS  Google Scholar 

  • Jinks AL, McGregor IS (1997) Modulation of anxiety-related behaviours following lesions of the prelimbic or infralimbic cortex in the rat. Brain Res 772:181–190

    Article  PubMed  CAS  Google Scholar 

  • Keck ME, Holsboer F (2001) Hyperactivity of CRH neuronal circuits as a target for therapeutic interventions in affective disorders. Peptides 22:835–844

    Article  PubMed  CAS  Google Scholar 

  • Keck ME, Welt T, Wigger A, Renner U, Engelmann M, Holsboer F, Landgraf R (2001) The anxiolytic effect of the CRH(1) receptor antagonist R121919 depends on innate emotionality in rats. Eur J Neurosci 13:373–380

    Article  PubMed  CAS  Google Scholar 

  • Keck ME, Ohl F, Holsboer F, Müller MB (2005) Listening to mutant mice: a spotlight on the role of CRF/CRF receptor systems in affective disorders. Neurosci Biobehav Rev 29:867–889

    Article  PubMed  CAS  Google Scholar 

  • Korte SM (2001) Corticosteroids in relation to fear, anxiety and psychopathology. Neurosci Biobehav Rev 25:117–142

    Article  PubMed  CAS  Google Scholar 

  • Krömer SA, Kessler MS, Milfay D, Birg IN, Bunck M, Czibere L, Panhuysen M, Pütz B, Deussing JM, Holsboer F, Landgraf R, Turck CW (2005) Identification of glyoxalase-I as a protein marker in a mouse model of extremes in trait anxiety. J Neurosci 25:4375–4384

    Article  PubMed  Google Scholar 

  • Latour I, Hamid J, Beedle AM, Zamponi GW, Macvicar BA (2003) Expression of voltage-gated Ca2+ channel subtypes in cultured astrocytes. Glia 41:347–353

    Article  PubMed  Google Scholar 

  • LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  PubMed  CAS  Google Scholar 

  • Liebsch G, Landgraf R, Gerstberger R, Probst JC, Wotjak CT, Engelmann M, Holsboer F, Montkowski A (1995) Chronic infusion of a CRH1 receptor antisense oligodeoxynucleotide into the central nucleus of the amygdala reduced anxiety-related behavior in socially defeated rats. Regul Pept 59:229–239

    Article  PubMed  CAS  Google Scholar 

  • Liebsch G, Landgraf R, Engelmann M, Lorscher P, Holsboer F (1999) Differential behavioural effects of chronic infusion of CRH 1 and CRH 2 receptor antisense oligonucleotides into the rat brain. J Psychiatr Res 33:153–163

    Article  PubMed  CAS  Google Scholar 

  • Linden AM, Baez M, Bergeron M, Schoepp DD (2003) Increased c-Fos expression in the centromedial nucleus of the thalamus in metabotropic glutamate 8 receptor knockout mice following the elevated plus maze test. Neuroscience 121:167–178

    Article  PubMed  CAS  Google Scholar 

  • Linden AM, Greene SJ, Bergeron M, Schoepp DD (2004) Anxiolytic activity of the MGLU2/3 receptor agonist LY354740 on the elevated plus maze is associated with the suppression of stress-induced c-Fos in the hippocampus and increases in c-Fos induction in several other stress-sensitive brain regions. Neuropsychopharmacology 29:502–513

    Article  PubMed  CAS  Google Scholar 

  • McGregor IS, Hargreaves GA, Apfelbach R, Hunt GE (2004) Neural correlates of cat odor-induced anxiety in rats: region-specific effects of the benzodiazepine midazolam. J Neurosci 24:4134–4144

    Article  PubMed  CAS  Google Scholar 

  • Menard J, Treit D (1999) Effects of centrally administered anxiolytic compounds in animal models of anxiety. Neurosci Biobehav Rev 23:591–613

    Article  PubMed  CAS  Google Scholar 

  • Morrow BA, Elsworth JD, Lee EJ, Roth RH (2000) Divergent effects of putative anxiolytics on stress-induced fos expression in the mesoprefrontal system of the rat. Synapse 36:143–154

    Article  PubMed  CAS  Google Scholar 

  • Muigg P, Salchner P, Scheiber S, Bunck M, Landgraf R, Singewald N (2005) Differential stress-induced neuronal activation pattern in mouse lines selectively bred for high, normal and low anxiety. J Neurochem 94(Suppl 2):421

    Google Scholar 

  • Müller MB, Zimmermann S, Sillaber I, Hagemeyer TP, Deussing JM, Timpl P, Kormann MS, Droste SK, Kuhn R, Reul JM, Holsboer F, Wurst W (2003) Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress. Nat Neurosci 6:1100–1107

    Article  PubMed  Google Scholar 

  • Nagahara AH, Handa RJ (1997) Age-related changes in c-fos mRNA induction after open-field exposure in the rat brain. Neurobiol Aging 18:45–55

    Article  PubMed  CAS  Google Scholar 

  • Neophytou SI, Graham M, Williams J, Aspley S, Marsden CA, Beckett SR (2000) Strain differences to the effects of aversive frequency ultrasound on behaviour and brain topography of c-fos expression in the rat. Brain Res 854:158–164

    Article  PubMed  CAS  Google Scholar 

  • Phillips ML, Drevets WC, Rauch SL, Lane R (2003) Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol Psychiatry 54:504–514

    Article  PubMed  Google Scholar 

  • Preil J, Müller MB, Gesing A, Reul JM, Sillaber I, van Gaalen MM, Landgrebe J, Holsboer F, Stenzel-Poore M, Wurst W (2001) Regulation of the hypothalamic–pituitary–adrenocortical system in mice deficient for CRH receptors 1 and 2. Endocrinology 142:4946–4955

    Article  PubMed  CAS  Google Scholar 

  • Refojo D, Echenique C, Muller MB, Reul JM, Deussing JM, Wurst W, Sillaber I, Paez-Pereda M, Holsboer F, Arzt E (2005) Corticotropin-releasing hormone activates ERK1/2 MAPK in specific brain areas. Proc Natl Acad Sci USA 102:6183–6188

    Article  PubMed  CAS  Google Scholar 

  • Salome N, Salchner P, Viltart O, Sequeira H, Wigger A, Landgraf R, Singewald N (2004) Neurobiological correlates of high (HAB) versus low anxiety-related behavior (LAB): differential Fos expression in HAB and LAB rats. Biol Psychiatry 55:715–723

    Article  PubMed  Google Scholar 

  • Salome N, Landgraf R, Viltart O (2006) Confinement to the open arm of the elevated-plus maze as anxiety paradigm: behavioral validation. Behav Neurosci 120:719–723

    Article  PubMed  Google Scholar 

  • Sheehan TP, Chambers RA, Russell DS (2004) Regulation of affect by the lateral septum: implications for neuropsychiatry. Brain Res Brain Res Rev 46:71–117

    Article  PubMed  Google Scholar 

  • Shekhar A (1994) Effects of treatment with imipramine and clonazepam on an animal model of panic disorder. Biol Psychiatry 36:748–758

    Article  PubMed  CAS  Google Scholar 

  • Singewald N (2006) Altered brain activity processing in high-anxiety rodents revealed by challenge paradigms and functional mapping. Neurosci Biobehav Rev (in press)

  • Singewald N, Salchner P, Sharp T (2003) Induction of c-Fos expression in specific areas of the fear circuitry in rat forebrain by anxiogenic drugs. Biol Psychiatry 53:275–283

    Article  PubMed  CAS  Google Scholar 

  • Skutella T, Probst JC, Renner U, Holsboer F, Behl C (1998) Corticotropin-releasing hormone receptor (type I) antisense targeting reduces anxiety. Neuroscience 85:795–805

    Article  PubMed  CAS  Google Scholar 

  • Smith GW, Aubry JM, Dellu F, Contarino A, Bilezikjian LM, Gold LH, Chen R, Marchuk Y, Hauser C, Bentley CA, Sawchenko PE, Koob GF, Vale W, Lee KF (1998) Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 20:1093–1102

    Article  PubMed  CAS  Google Scholar 

  • Steckler T, Holsboer F (1999) Corticotropin-releasing hormone receptor subtypes and emotion. Biol Psychiatry 46:1480–1508

    Article  PubMed  CAS  Google Scholar 

  • Thompson RH, Swanson LW (1998) Organization of inputs to the dorsomedial nucleus of the hypothalamus: a reexamination with Fluorogold and PHAL in the rat. Brain Res Brain Res Rev 27:89–118

    Article  PubMed  CAS  Google Scholar 

  • Timpl P, Spanagel R, Sillaber I, Kresse A, Reul JM, Stalla GK, Blanquet V, Steckler T, Holsboer F, Wurst W (1998) Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat Genet 19:162–166

    Article  PubMed  CAS  Google Scholar 

  • Vale W, Spiess J, Rivier C, Rivier J (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 213:1394–1397

    Article  PubMed  CAS  Google Scholar 

  • Van Pett K, Viau V, Bittencourt JC, Chan RK, Li HY, Arias C, Prins GS, Perrin M, Vale W, Sawchenko PE (2000) Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J Comp Neurol 428:191–212

    Article  PubMed  Google Scholar 

  • Zangenehpour S, Chaudhuri A (2002) Differential induction and decay curves of c-fos and Zif268 revealed through dual activity maps. Brain Res Mol Brain Res 109:221–225

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The two authors, Nguyen and Keck, contributed equally in this paper. This work was funded by the Österreichische Nationalbank (ÖNB) and by the Federal Ministry of Education and Research (BMBF) in the framework of the National Genome Research Network (NGFN), Förderkennzeichen 01GS0481.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Singewald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, N.K., Keck, M.E., Hetzenauer, A. et al. Conditional CRF receptor 1 knockout mice show altered neuronal activation pattern to mild anxiogenic challenge. Psychopharmacology 188, 374–385 (2006). https://doi.org/10.1007/s00213-006-0513-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0513-1

Keywords

Navigation