Skip to main content

Advertisement

Log in

Sensitization to amphetamine, but not PCP, impairs attentional set shifting: reversal by a D1 receptor agonist injected into the medial prefrontal cortex

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Repeated exposure to psychomotor stimulants can lead to sensitization to their effects, and sensitization has been implicated in the pathophysiology of schizophrenia and drug abuse. These disorders are characterized by cognitive deficits, particularly in prefrontally mediated executive function.

Objective

The present experiments were conducted to investigate the effects of sensitizing regimens of amphetamine and phencyclidine (PCP) on attentional set shifting.

Methods

Rats received injections of amphetamine, PCP or saline three times per week for 5 weeks. Four weeks later, rats were trained to dig for food in one of two bowls, each bowl having an odour and a texture. Only one dimension (odour or texture) correctly predicted which bowl was baited. Rats were then tested on a series of discriminations including those requiring an intra-dimensional shift (IDS), an extra-dimensional shift (EDS) or a reversal of previously relevant and irrelevant stimuli.

Results

Rats sensitized to amphetamine performed normally on the IDS, but were impaired on the EDS, as well as on reversal discriminations. PCP-sensitized rats were unaffected on any of the discriminations. In amphetamine-sensitized rats the deficit at the EDS stage was reversed by infusion of the D1 receptor agonist SKF38393 into the medial prefrontal cortex (mPFC).

Conclusions

Results show that the amphetamine-sensitized state impairs prefrontally mediated attentional set shifting. This is consistent with cognitive deficits in schizophrenia and addiction, and with the evidence that amphetamine sensitization is accompanied by functional changes in the mPFC. These results further add to a growing literature showing that activating D1 receptors in the mPFC improves aspects of cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abi-Dargham A, Gil R, Krystal J, Baldwin RM, Seibyl JP, Bowers M, van Dyck CH, Charney DS, Innis RB, Laruelle M (1998) Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry 155:761–767

    PubMed  CAS  Google Scholar 

  • Balla A, Koneru R, Smiley J, Sershen H, Javitt DC (2001) Continuous phencyclidine treatment induces schizophrenia-like hyperreactivity of striatal dopamine release. Neuropsychopharmacology 25:157–164

    Article  PubMed  CAS  Google Scholar 

  • Balla A, Sershen H, Serra M, Koneru R, Javitt DC (2003) Subchronic continuous phencyclidine administration potentiates amphetamine-induced frontal cortex dopamine release. Neuropsychopharmacology 28:34–44

    Article  PubMed  CAS  Google Scholar 

  • Baruch I, Hemsley DR, Gray JA (1988) Differential performance of acute and chronic schizophrenics in a latent inhibition task. J Nerv Ment Dis 176:598–606

    Article  PubMed  CAS  Google Scholar 

  • Birrell JM, Brown VJ (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 20:4320–4324

    PubMed  CAS  Google Scholar 

  • Braff DL, Grillon C, Geyer MA (1992) Gating and habituation of the startle reflex in schizophrenic patients. Arch Gen Psychiatry 49:206–215

    PubMed  CAS  Google Scholar 

  • Cai JX, Arnsten AF (1997) Dose-dependent effects of the dopamine D1 receptor agonists A77636 or SKF81297 on spatial working memory in aged monkeys. J Pharmacol Exp Ther 283:183–189

    PubMed  CAS  Google Scholar 

  • Clark L, Cools R, Robbins TW (2004) The neuropsychology of ventral prefrontal cortex: decision-making and reversal learning. Brain Cogn 55:41–53

    Article  PubMed  CAS  Google Scholar 

  • Convit A, Wolf OT, de Leon MJ, Patalinjug M, Kandil E, Caraos C, Scherer A, Saint Louis LA, Cancro R (2001) Volumetric analysis of the pre-frontal regions: findings in aging and schizophrenia. Psychiatry Res 107:61–73

    Article  PubMed  CAS  Google Scholar 

  • Crider A (1997) Perseveration in schizophrenia. Schizophr Bull 23:63–74

    PubMed  CAS  Google Scholar 

  • Crombag HS, Gorny G, Li Y, Kolb B, Robinson TE (2005) Opposite effects of amphetamine self-administration experience on dendritic spines in the medial and orbital prefrontal cortex. Cereb Cortex 15:341–348

    Article  PubMed  Google Scholar 

  • Dalley JW, Theobald DE, Berry D, Milstein JA, Laane K, Everitt BJ, Robbins TW (2005) Cognitive sequelae of intravenous amphetamine self-administration in rats: evidence for selective effects on attentional performance. Neuropsychopharmacology 30:525–537

    Article  PubMed  CAS  Google Scholar 

  • Daniel DG, Weinberger DR, Jones DW, Zigun JR, Coppola R, Handel S, Bigelow LB, Goldberg TE, Berman KF, Kleinman JE (1991) The effect of amphetamine on regional cerebral blood flow during cognitive activation in schizophrenia. J Neurosci 11:1907–1917

    PubMed  CAS  Google Scholar 

  • Deller T, Sarter M (1998) Effects of repeated administration of amphetamine on behavioral vigilance: evidence for “sensitized” attentional impairments. Psychopharmacology (Berl) 137:410–414

    Article  CAS  Google Scholar 

  • Deroche V, Le Moal M, Piazza PV (1999) Cocaine self-administration increases the incentive motivational properties of the drug in rats. Eur J Neurosci 11:2731–2736

    Article  PubMed  CAS  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1996a) Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380:69–72

    Article  PubMed  CAS  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1996b) Primate analogue of the Wisconsin Card Sorting Test: effects of excitotoxic lesions of the prefrontal cortex in the marmoset. Behav Neurosci 110:872–886

    Article  PubMed  CAS  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1997) Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin Card Sort Test: restriction to novel situations and independence from “on-line” processing. J Neurosci 17:9285–9297

    PubMed  CAS  Google Scholar 

  • Egerton A, Reid L, McGregor S, Morris BJ, Pratt JA (2004) Chronic phencyclidine administration produces attentional set shifting deficits in the rat. Program No. 796.13. Abstract Viewer/Itinerary Planner. Society for Neuroscience, Washington, DC, Online

    Google Scholar 

  • Elliott R, McKenna PJ, Robbins TW, Sahakian BJ (1995) Neuropsychological evidence for frontostriatal dysfunction in schizophrenia. Psychol Med 25:619–630

    Article  PubMed  CAS  Google Scholar 

  • Feldpausch DL, Needham LM, Stone MP, Althaus JS, Yamamoto BK, Svensson KA, Merchant KM (1998) The role of dopamine D4 receptor in the induction of behavioral sensitization to amphetamine and accompanying biochemical and molecular adaptations. J Pharmacol Exp Ther 286:497–508

    PubMed  CAS  Google Scholar 

  • Floresco SB, Phillips AG (2001) Delay-dependent modulation of memory retrieval by infusion of a dopamine D1 agonist into the rat medial prefrontal cortex. Behav Neurosci 115:934–939

    Article  PubMed  CAS  Google Scholar 

  • Goldberg TE, Weinberger DR, Berman KF, Pliskin NH, Podd MH (1987) Further evidence for dementia of the prefrontal type in schizophrenia? A controlled study of teaching the Wisconsin Card Sorting Test. Arch Gen Psychiatry 44:1008–1014

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS, Castner SA, Svensson TH, Siever LJ, Williams GV (2004) Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacology (Berl) 174:3–16

    Article  CAS  Google Scholar 

  • Goldstein RZ, Volkow ND, Wang GJ, Fowler JS, Rajaram S (2001) Addiction changes orbitofrontal gyrus function: involvement in response inhibition. NeuroReport 12:2595–2599

    Article  PubMed  CAS  Google Scholar 

  • Goldstein RZ, Volkow ND, Chang L, Wang GJ, Fowler JS, Depue RA, Gur RC (2002) The orbitofrontal cortex in methamphetamine addiction: involvement in fear. NeuroReport 13:2253–2257

    Article  PubMed  Google Scholar 

  • Granon S, Passetti F, Thomas KL, Dalley JW, Everitt BJ, Robbins TW (2000) Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. J Neurosci 20:1208–1215

    PubMed  CAS  Google Scholar 

  • Gray NS, Pilowsky LS, Gray JA, Kerwin RW (1995) Latent inhibition in drug naive schizophrenics: relationship to duration of illness and dopamine D2 binding using SPET. Schizophr Res 17:95–107

    Article  PubMed  CAS  Google Scholar 

  • Greenberg BD, Segal DS (1985) Acute and chronic behavioral interactions between phencyclidine (PCP) and amphetamine: evidence for a dopaminergic role in some PCP-induced behaviors. Pharmacol Biochem Behav 23:99–105

    Article  PubMed  CAS  Google Scholar 

  • Groenewegen HJ, Galis-de Graaf Y, Smeets WJ (1999) Integration and segregation of limbic cortico-striatal loops at the thalamic level: an experimental tracing study in rats. J Chem Neuroanat 16:167–185

    Article  PubMed  CAS  Google Scholar 

  • Hedou G, Homberg J, Feldon J, Heidbreder CA (2001) Expression of sensitization to amphetamine and dynamics of dopamine neurotransmission in different laminae of the rat medial prefrontal cortex. Neuropharmacology 40:366–382

    Article  PubMed  CAS  Google Scholar 

  • Horger BA, Giles MK, Schenk S (1992) Preexposure to amphetamine and nicotine predisposes rats to self-administer a low dose of cocaine. Psychopharmacology (Berl) 107:271–276

    Article  CAS  Google Scholar 

  • Howes OD, McDonald C, Cannon M, Arseneault L, Boydell J, Murray RM (2004) Pathways to schizophrenia: the impact of environmental factors. Int J Neuropsychopharmacol 7(Suppl 1):S7–S13

    Article  PubMed  CAS  Google Scholar 

  • Hutton SB, Murphy FC, Joyce EM, Rogers RD, Cuthbert I, Barnes TR, McKenna PJ, Sahakian BJ, Robbins TW (2002) Decision making deficits in patients with first-episode and chronic schizophrenia. Schizophr Res 55:249–257

    Article  PubMed  CAS  Google Scholar 

  • Jentsch JD, Redmond DE Jr, Elsworth JD, Taylor JR, Youngren KD, Roth RH (1997a) Enduring cognitive deficits and cortical dopamine dysfunction in monkeys after long-term administration of phencyclidine. Science 277:953–955

    Article  PubMed  CAS  Google Scholar 

  • Jentsch JD, Tran A, Le D, Youngren KD, Roth RH (1997b) Subchronic phencyclidine administration reduces mesoprefrontal dopamine utilization and impairs prefrontal cortical-dependent cognition in the rat. Neuropsychopharmacology 17:92–99

    Article  PubMed  CAS  Google Scholar 

  • Jentsch JD, Taylor JR, Roth RH (1998) Subchronic phencyclidine administration increases mesolimbic dopaminergic system responsivity and augments stress- and psychostimulant-induced hyperlocomotion. Neuropsychopharmacology 19:105–113

    Article  PubMed  CAS  Google Scholar 

  • Jentsch JD, Olausson P, De La Garza R II, Taylor JR (2002) Impairments of reversal learning and response perseveration after repeated, intermittent cocaine administrations to monkeys. Neuropsychopharmacology 26:183–190

    Article  PubMed  CAS  Google Scholar 

  • Johnson KM, Phillips M, Wang C, Kevetter GA (1998) Chronic phencyclidine induces behavioral sensitization and apoptotic cell death in the olfactory and piriform cortex. J Neurosci Res 52:709–722

    Article  PubMed  CAS  Google Scholar 

  • Kalivas PW (1995) Interactions between dopamine and excitatory amino acids in behavioral sensitization to psychostimulants. Drug Alcohol Depend 37:95–100

    Article  PubMed  CAS  Google Scholar 

  • Kondrad RL, Burk JA (2004) Transient disruption of attentional performance following escalating amphetamine administration in rats. Psychopharmacology (Berl) 175:436–442

    CAS  Google Scholar 

  • Kuperberg GR, Broome MR, McGuire PK, David AS, Eddy M, Ozawa F, Goff D, West WC, Williams SC, van der Kouwe AJ, Salat DH, Dale AM, Fischl B (2003) Regionally localized thinning of the cerebral cortex in schizophrenia. Arch Gen Psychiatry 60:878–888

    Article  PubMed  Google Scholar 

  • Laruelle M (2000) The role of endogenous sensitization in the pathophysiology of schizophrenia: implications from recent brain imaging studies. Brain Res Brain Res Rev 31:371–384

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R (1999) Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatry 46:56–72

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Kim CH, Ichikawa J, Meltzer HY (2003) Effect of repeated administration of phencyclidine on spatial performance in an eight-arm radial maze with delay in rats and mice. Pharmacol Biochem Behav 75:335–340

    Article  PubMed  CAS  Google Scholar 

  • Lieberman JA, Kane JM, Alvir J (1987) Provocative tests with psychostimulant drugs in schizophrenia. Psychopharmacology (Berl) 91:415–433

    Article  CAS  Google Scholar 

  • Lieberman JA, Sheitman BB, Kinon BJ (1997) Neurochemical sensitization in the pathophysiology of schizophrenia: deficits and dysfunction in neuronal regulation and plasticity. Neuropsychopharmacology 17:205–229

    Article  PubMed  CAS  Google Scholar 

  • Lu W, Wolf ME (1999) Repeated amphetamine administration alters AMPA receptor subunit expression in rat nucleus accumbens and medial prefrontal cortex. Synapse 32:119–131

    Article  PubMed  CAS  Google Scholar 

  • Lu W, Monteggia LM, Wolf ME (1999) Withdrawal from repeated amphetamine administration reduces NMDAR1 expression in the rat substantia nigra, nucleus accumbens and medial prefrontal cortex. Eur J Neurosci 11:3167–3177

    Article  PubMed  CAS  Google Scholar 

  • Marquis JP, Goulet S, Dore FY (2003) Schizophrenia-like syndrome inducing agent phencyclidine failed to impair memory for temporal order in rats. Neurobiol Learn Mem 80:158–167

    Article  PubMed  CAS  Google Scholar 

  • McAlonan K, Brown VJ (2003) Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav Brain Res 146:97–103

    Article  PubMed  Google Scholar 

  • Murphy CA, Di Iorio L, Feldon J (2001) Effects of psychostimulant withdrawal on latent inhibition of conditioned active avoidance and prepulse inhibition of the acoustic startle response. Psychopharmacology (Berl) 156:155–164

    Article  CAS  Google Scholar 

  • Nocjar C, Panksepp J (2002) Chronic intermittent amphetamine pretreatment enhances future appetitive behavior for drug- and natural-reward: interaction with environmental variables. Behav Brain Res 128:189–203

    Article  PubMed  CAS  Google Scholar 

  • Ongur D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10:206–219

    Article  PubMed  CAS  Google Scholar 

  • Ornstein TJ, Iddon JL, Baldacchino AM, Sahakian BJ, London M, Everitt BJ, Robbins TW (2000) Profiles of cognitive dysfunction in chronic amphetamine and heroin abusers. Neuropsychopharmacology 23:113–126

    Article  PubMed  CAS  Google Scholar 

  • Pantelis C, Barber FZ, Barnes TR, Nelson HE, Owen AM, Robbins TW (1999) Comparison of set-shifting ability in patients with chronic schizophrenia and frontal lobe damage. Schizophr Res 37:251–270

    Article  PubMed  CAS  Google Scholar 

  • Pantelis C, Velakoulis D, McGorry PD, Wood SJ, Suckling J, Phillips LJ, Yung AR, Bullmore ET, Brewer W, Soulsby B, Desmond P, McGuire PK (2003) Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet 361:281–288

    Article  PubMed  Google Scholar 

  • Pantelis C, Harvey CA, Plant G, Fossey E, Maruff P, Stuart GW, Brewer WJ, Nelson HE, Robbins TW, Barnes TR (2004) Relationship of behavioural and symptomatic syndromes in schizophrenia to spatial working memory and attentional set-shifting ability. Psychol Med 34:693–703

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. 4th edn. Academic, San Diego

    Google Scholar 

  • Robbins TW (2000) Chemical neuromodulation of frontal-executive functions in humans and other animals. Exp Brain Res 133:130–138

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 396:157–198

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (2000) The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction 95(Suppl 2):S91–S117

    Article  PubMed  Google Scholar 

  • Robinson TE, Kolb B (1997) Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J Neurosci 17:8491–8497

    PubMed  CAS  Google Scholar 

  • Rodefer JS, Murphy ER, Baxter MG (2005) PDE10A inhibition reverses subchronic PCP-induced deficits in attentional set-shifting in rats. Eur J Neurosci 21:1070–1076

    Article  PubMed  Google Scholar 

  • Russig H, Murphy CA, Feldon J (2002) Clozapine and haloperidol reinstate latent inhibition following its disruption during amphetamine withdrawal. Neuropsychopharmacology 26:765–777

    Article  PubMed  CAS  Google Scholar 

  • Schoenbaum G, Saddoris MP, Ramus SJ, Shaham Y, Setlow B (2004) Cocaine-experienced rats exhibit learning deficits in a task sensitive to orbitofrontal cortex lesions. Eur J Neurosci 19:1997–2002

    Article  PubMed  Google Scholar 

  • Sorg BA, Davidson DL, Kalivas PW, Prasad BM (1997) Repeated daily cocaine alters subsequent cocaine-induced increase of extracellular dopamine in the medial prefrontal cortex. J Pharmacol Exp Ther 281:54–61

    PubMed  CAS  Google Scholar 

  • Stefani MR, Moghaddam B (2002) Effects of repeated treatment with amphetamine or phencyclidine on working memory in the rat. Behav Brain Res 134:267–274

    Article  PubMed  CAS  Google Scholar 

  • Stefani MR, Moghaddam B (2004) Cognitive set-shifting task performance phasically increases dopamine output in the rat medial prefrontal cortex. Program No. 551.3. 2004 abstract viewer/itinerary planner. Society for Neuroscience, Washington, DC, Online

    Google Scholar 

  • Taylor JR, Horger BA (1999) Enhanced responding for conditioned reward produced by intra-accumbens amphetamine is potentiated after cocaine sensitization. Psychopharmacology (Berl) 142:31–40

    Article  CAS  Google Scholar 

  • Tenn CC, Fletcher PJ, Kapur S (2003) Amphetamine-sensitized animals show a sensorimotor gating and neurochemical abnormality similar to that of schizophrenia. Schizophr Res 64:103–114

    Article  PubMed  Google Scholar 

  • Tenn CC, Kapur S, Fletcher PJ (2005) Sensitization to amphetamine, but not phencyclidine, disrupts prepulse inhibition and latent inhibition. Psychopharmacology (Berl) 180:366–376

    Article  CAS  Google Scholar 

  • Turgeon SM, Case LC (2001) The effects of phencyclidine pretreatment on amphetamine-induced behavior and c-Fos expression in the rat. Brain Res 888:302–305

    Article  PubMed  CAS  Google Scholar 

  • Ujike H (2002) Stimulant-induced psychosis and schizophrenia: the role of sensitization. Curr Psychiatry Rep 4:177–184

    Article  PubMed  Google Scholar 

  • Vanderschuren LJ, Kalivas PW (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology (Berl) 151:99–120

    Article  CAS  Google Scholar 

  • Vanderschuren LJ, Schmidt ED, De Vries TJ, Van Moorsel CA, Tilders FJ, Schoffelmeer AN (1999) A single exposure to amphetamine is sufficient to induce long-term behavioral, neuroendocrine, and neurochemical sensitization in rats. J Neurosci 19:9579–9586

    PubMed  CAS  Google Scholar 

  • Velligan DI, Bow-Thomas CC (1999) Executive function in schizophrenia. Semin Clin Neuropsychiatry 4:24–33

    PubMed  CAS  Google Scholar 

  • Vezina P, Lorrain DS, Arnold GM, Austin JD, Suto N (2002) Sensitization of midbrain dopamine neuron reactivity promotes the pursuit of amphetamine. J Neurosci 22:4654–4662

    PubMed  CAS  Google Scholar 

  • Volkow ND, Fowler JS (2000) Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb Cortex 10:318–325

    Article  PubMed  CAS  Google Scholar 

  • Wyvell CL, Berridge KC (2001) Incentive sensitization by previous amphetamine exposure: increased cue-triggered “wanting” for sucrose reward. J Neurosci 21:7831–7840

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a special initiative grant from the Ontario Mental Health Foundation. C.T. was supported by a Research Fellowship from the OMHF. S.K. is supported by a Canadian Research Chair in Schizophrenia and Therapeutic Neuroscience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Fletcher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fletcher, P.J., Tenn, C.C., Rizos, Z. et al. Sensitization to amphetamine, but not PCP, impairs attentional set shifting: reversal by a D1 receptor agonist injected into the medial prefrontal cortex. Psychopharmacology 183, 190–200 (2005). https://doi.org/10.1007/s00213-005-0157-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0157-6

Keywords

Navigation