Skip to main content

Advertisement

Log in

Women with severe obesity and relatively low bone mineral density have increased fracture risk

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Among women with obesity, those with the lowest bone density have the highest fracture risk. The types of fractures include any fracture, fragility-type fractures (vertebra, hip, upper arm, forearm, and lower leg), hand and foot fractures, osteoporotic, and other fracture types.

Introduction

Recent reports have contradicted the traditional view that obesity is protective against fracture. In this study, we have evaluated the relationship between fracture history and bone mineral density (BMD) in subjects with obesity.

Methods

Fracture risk was assessed in 400 obese women in relation to body mass index (BMI), BMD, and clinical and laboratory variables.

Results

Subjects (mean age, 43.8 years; SD, 11.1 years) had a mean BMI of 46.0 kg/m2 (SD, 7.4 kg/m2). There were a total of 178 self-reported fractures in 87 individuals (21.8 % of subjects); fragility-type fractures (hip, vertebra, proximal humerus, distal forearm, and ankle/lower leg) were present in 58 (14.5 %). There were higher proportions of women in the lowest femoral neck BMD quintile who had any fracture history (41.3 vs. 17.2 %, p < 0.0001), any fragility-type fractures (26.7 vs. 11.7 %, p = 0.0009), hand and foot fractures (16.0 vs. 5.5 %, p = 0.002), other fracture types (5.3 vs. 1.2 %, p = 0.02), and osteoporotic fractures (8.0 vs. 1.2 %, p < 0.0001) compared to the remaining population. The odds ratio for any fracture was 0.63 (95 % CI, 0.49–0.89; p = 0.0003) per SD increase in BMD and was 4.3 (95 % CI, 1.9–9.4; p = 0.003) in the lowest BMD quintile compared to the highest quintile. No clinical or biochemical predictors of fracture risk were identified apart from BMD.

Conclusions

Women with obesity who have the lowest BMD values, despite these being almost normal, have an elevated risk of fracture compared to those with higher BMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. De Laet C, Kanis JA, Oden A, Johanson H, Johnell O, Delmas P, Eisman JA, Kroger H, Fujiwara S, Garnero P, McCloskey EV, Mellstrom D, Melton LJ, Meunier PJ, Pols HA, Reeve J, Silman A, Tenenhouse A (2005) Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16:1330–1338

    Article  PubMed  Google Scholar 

  2. Prieto-Alhambra D, Premaor MO, Fina Aviles F, Hermosilla E, Martinez-Laguna D, Carbonell-Abella C, Nogues X, Compston JE, Diez-Perez A (2012) The association between fracture and obesity is site-dependent: a population-based study in postmenopausal women. J Bone Miner Res 27:294–300

    Article  PubMed  Google Scholar 

  3. Gnudi S, Sitta E, Lisi L (2009) Relationship of body mass index with main limb fragility fractures in postmenopausal women. J Bone Miner Metab 27:479–484

    Article  PubMed  Google Scholar 

  4. Compston JE, Watts NB, Chapurlat R, Cooper C, Boonen S, Greenspan S, Pfeilschifter J, Silverman S, Diez-Perez A, Lindsay R, Saag KG, Netelenbos JC, Gehlbach S, Hooven FH, Flahive J, Adachi JD, Rossini M, Lacroix AZ, Roux C, Sambrook PN, Siris ES, Investigators G (2011) Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med 124:1043–1050

    Article  PubMed  Google Scholar 

  5. Bergkvist D, Hekmat K, Svensson T, Dahlberg L (2009) Obesity in orthopedic patients. Surg Obes Relat Dis 5:670–672

    Article  PubMed  Google Scholar 

  6. Premaor MO, Ensrud K, Lui L, Parker RA, Cauley J, Hillier TA, Cummings S, Compston JE, for the Study of Osteoporotic Fractures (2011) Risk factors for nonvertebral fracture in obese older women. J Clin Endocrinol Metab 96:2414–2421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. FitzGerald G, Boonen S, Compston JE, Pfeilschifter J, LaCroix AZ, Hosmer DW Jr, Hooven FH, Gehlbach SH, Investigators GLOW (2012) Differing risk profiles for individual fracture sites: evidence from the global longitudinal study of osteoporosis in women (GLOW). J Bone Miner Res 27:1907–1915

    Article  PubMed  Google Scholar 

  8. King CM, Hamilton GA, Cobb M, Carpenter D, Ford LA (2012) Association between ankle fractures and obesity. J Foot Ankle Surg 51:543–547

    Article  PubMed  Google Scholar 

  9. Johansson H, Kanis JA, Oden A et al (2014) A meta-analysis of the association of fracture risk and body mass index in women. J Bone Miner Res 29:223–233

    Article  PubMed  Google Scholar 

  10. Holmberg AH, Johnell O, Nilsson PM, Nilsson J, Berglund G, Akesson K (2006) Risk factors for fragility fracture in middle age. A prospective population-based study of 33,000 men and women. Osteoporos Int 17:1065–1077

    Article  CAS  PubMed  Google Scholar 

  11. Baim S, Binkley N, Bilezikian JP, Kendler DL, Hans DB, Lewiecki M, Silverman S (2008) Official positions of the international society for clinical densitometry and executive summary of the 2007 ISCD position development conference. J Clin Densitom 11:6–21

    Article  PubMed  Google Scholar 

  12. World Health Organization (1995) Physical status: the use and interpretation of anthropometry. Report of a WHO expert committee. World Health Organization Tech Rep Ser 854:1–452

  13. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  CAS  PubMed  Google Scholar 

  14. Leslie WD, Lix LM, Langsetmo L, Berger C, Goltzman D, Hanley DA, Adachi JD, Johansson H, Oden A, McCloskey E, Kanis JA (2011) Construction of a FRAX(R) model for the assessment of fracture probability in Canada and implications for treatment. Osteoporos Int 22:817–827

    Article  CAS  PubMed  Google Scholar 

  15. Padwal RS, Rueda-Clausen CF, Sharma AM, Agborsangaya CB, Klarenbach S, Birch DW, Karmali S, McCargar L, Majumdar SR (2013) Weight loss and outcomes in wait-listed, medically managed, and surgically treated patients enrolled in a population-based bariatric program: prospective cohort study. Med Care 52(3):208–15

    Article  Google Scholar 

  16. Hosmer WD, Genant HK, Browner WS (2002) Fractures before menopause: a red flag for physicians. Osteoporos Int 13:337–341

    Article  CAS  PubMed  Google Scholar 

  17. Cummings SR, Black D (1995) Bone mass measurements and risk of fracture in Caucasian women: a review of findings from prospective studies. Am J Med 98(Sippl 2A):24S–27S

    Article  CAS  PubMed  Google Scholar 

  18. Ross PD, Genant HK, Davis JW, Miller PD, Wasnich RD (1993) Predicting vertebral fracture incidence from prevalent fractures and bone density among non-Black, osteoporotic women. Osteoporos Int 3:120–126

    Article  CAS  PubMed  Google Scholar 

  19. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 18:1254–1259

    Article  Google Scholar 

  20. Chen P, Krege JH, Adachi JD, Prior JC, Tenenhouse A, Brown JP, Papadimitropoulos E, Kreiger N, Olszynski WP, Josse RG, Goltzman D, CaMOS Research Group (2009) J Bone Miner Res 24:495–502

    Article  PubMed  Google Scholar 

  21. Kanis JA, Johnell O, De Laet C, Johansson H, Oden A, Delmas P, Eisman J, Fujiwara S, Garnero P, Kroger H, McCloskey EV, Mellstrom D, Melton LJ, Pols H, Reeve J, Silman A, Tenenhouse A (2004) A meta-analysis of previous fracture and subsequent fracture risk. Bone 35:375–382

    Article  CAS  PubMed  Google Scholar 

  22. Kanis JA (2014) FRAX. http://www.shef.ac.uk/FRAX/. Accessed Feb 4

  23. Chaudhry S, Egol KA (2011) Ankle injuries and fractures in the obese patient. Orthop Clin N Am 42:45–53

    Article  Google Scholar 

  24. Haraguchi N, Armiger RS (2009) A new interpretation of the mechanism of ankle fracture. J Bone Joint Surg Am 91:821–829

    Article  PubMed  Google Scholar 

  25. Pirro M, Fabbriciani G, Leli C, Callarelli L, Manfredelli MR, Fioroni C, Mannarino MR, Scarponi AM, Mannarino E (2010) High weight or body mass index increase the risk of vertebral fractures in postmenopausal osteoporotic women. J Bone Miner Metab 28:88–93

    Article  PubMed  Google Scholar 

  26. Lee KM, Chung CY, Kwon SS, Won SH, Lee SY, Chung MK, Park MS (2013) Ankle fractures have features of an osteoporotic fracture. Osteoporos Int 24(11):2819–2825

    Article  CAS  PubMed  Google Scholar 

  27. Mattila VM, Jormanainen V, Sahi T, Pihlajamaki H (2007) An association between socioeconomic, health and health behavioural indicators and fractures in young adult males. Osteoporos Int 18:1609–1615

    Article  CAS  PubMed  Google Scholar 

  28. Silva MJ (2007) Biomechanics of osteoporotic fractures. Injury 38:S69–S76

    Article  PubMed  Google Scholar 

  29. Reid IR (2002) Relationships among body mass, its components, and bone. Bone 31:547–555

    Article  CAS  PubMed  Google Scholar 

  30. Davison KS, Siminoski K, Adachi JD, Hanley DA, Goltzman D, Hodsman AB, Josse R, Kaiser S, Olszynski WP, Papaioannou A, Ste-Marie LG, Kendler DL, Tenenhouse A, Brown JP (2006) Bone strength: the whole is greater than the sum of its parts. Semin Arthritis Rheum 36:22–31

    Article  PubMed  Google Scholar 

  31. Mignardot JB, Olivier I, Promayon E, Nougier V (2010) Obesity impact on the attentional cost for controlling posture. PLoS One 5:e14387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Nelson LR, Bulun SE (2001) Estrogen production and action. J Am Acad Dermatol 45:S116–S124

    Article  CAS  PubMed  Google Scholar 

  33. Richards JB, Rivadeneira F, Inouye M, Pastinen TM, Soranzo SG, Andrew T, Falchi M, Gwilliam R, Ahmadi KR, Valdes AM, Arp P, Whittaker P, Verlaan DJ, Jhamai M, Kumanduri V, Moorhouse M, van Meurs JB, Hofman A, Pols HAP, Hart D, Zhai G, Kato BS, Mullin BH, Zhang F, Deloukas P, Uitterlinden AG, Spector TD (2008) Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371:1505–1512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Barrett-Connor E, Kritz-Silverstein D (1996) Does hyperinsulinemia preserve bone? Diabetes Care 19:1388–1392

    Article  CAS  PubMed  Google Scholar 

  35. Reid IR (2008) Relationships between fat and bone. Osteoporos Int 19:595–606

    Article  CAS  PubMed  Google Scholar 

  36. Rosen CJ, Bouxsein ML (2006) Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol 2:35–43

    Article  CAS  PubMed  Google Scholar 

  37. Crepaldi G, Romanato G, Tonin P, Maggi S (2007) Osteoporosis and body composition. J Endocrinol Investig 30:S42–S47

    Google Scholar 

  38. Shapses SA, Sukumar D (2012) Bone metabolism in obesity and weight loss. Annu Rev Nutr 32:287–309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Turner CH, Pavalko FM (1998) Mechanotransduction and functional response of the skeleton to physical stress: the mechanisms and mechanics of bone adaptation. J Orthop Sci 3:346–355

    Article  CAS  PubMed  Google Scholar 

  40. Hsu YH, Venners SA, Terwedow HA, Feng Y, Niu T, Li Z, Laird N, Brain JD, Cummings SR, Bouxsein ML, Rosen CJ, Xu X (2006) Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am J Clin Nutr 83:146–154

    CAS  PubMed  Google Scholar 

  41. Zhao LJ, Liu YJ, Liu PY, Hamilton J, Recker RR, Deng HW (2007) Relationship of obesity with osteoporosis. J Clin Endocrinol Metab 92:1640–1646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Riggs BL, Khosla S, Melton LJ 3rd (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302

    Article  CAS  PubMed  Google Scholar 

  43. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207

    Article  CAS  PubMed  Google Scholar 

  44. Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, Kondo H, Richards WG, Bannon TW, Noda M, Clement K, Vaisse C, Karsenty G (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434:514–520

    Article  CAS  PubMed  Google Scholar 

  45. Luo XH, Guo LJ, Xie H, Yuan LQ, Wu XP, Zhou HD, Liao EY (2006) Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signalling pathway. J Bone Miner Res 21:1648–1656

    Article  CAS  PubMed  Google Scholar 

  46. Jurimae J, Rembel K, Jurimae T, Rehand M (2005) Adiponectin is associated with bone mineral density in perimenopausal women. Horm Metab Res 37:297–302

    Article  CAS  PubMed  Google Scholar 

  47. Lenchik L, Register TC, Hsu FC, Lohman K, Nicklas BJ, Freedman BI, Langfield CD, Carr JJ, Boweden DW (2003) Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone 33:646–651

    Article  CAS  PubMed  Google Scholar 

  48. Oh KW, Lee WY, Rhee EJ, Baek KH, Yoon KH, Kang MI, Yun EJ, Park CY, Ihm SH, Choi MG, Yoo HJ, Park SW (2005) The relationship between serum resistin, leptin, adiponectin, ghrelin levels and bone mineral density in middle-aged men. Clin Endocrinol 63:131–138

    Article  CAS  Google Scholar 

  49. Tang ZH, Xiao PX, Lei SF, Deng FY, Zhao LJ, Deng HY, Tan LJ, Shen H, Xiong DH, Recker R, Deng HW (2007) A bivariate whole-genome linkage scan suggests several shared genomic regions for obesity and osteoporosis. J Clin Endocrinol Metab 92:2751–2757

    Article  CAS  PubMed  Google Scholar 

  50. Premaor MO, Parker RA, Cummings S, Ensrud K, Cauley J, Lui L, Hillier TA, Compston J, Study of Osteoporotic Fractures (SOF) Research Group (2012) Predictive value of FRAX for fracture in obese older women. J Bone Miner Res 28:188–195

    Article  Google Scholar 

  51. Premaor MO, Pilbrow L, Tonkin C, Parker RA, Compston J (2010) Obesity and fractures in postmenopausal women. J Bone Miner Res 25:292–297

    Article  PubMed  Google Scholar 

  52. Flegal KM, Carroll MD, Kit BK, Ogden CL (2012) Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA 307:491–497

    Article  PubMed  Google Scholar 

  53. Shields M, Carroll MD, Ogden CL (2011) Adult obesity prevalence in Canada and the United States. NCHS data brief, no 56. National Center for Health Statistics, Hyattsville

    Google Scholar 

  54. Yu EW, Thomas BJ, Brown JK, Finkelstein JS (2012) Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT. J Bone Miner Res 27:119–124

    Article  PubMed  Google Scholar 

  55. Fogelholm GM, Sievanen HT, Kukkonen-Harjula TK, Pasanen ME (2001) Bone mineral density during reduction, maintenance and regain of body weight in premenopausal, obese women. Osteoporos Int 12:199–206

    Article  CAS  PubMed  Google Scholar 

  56. Binkley N, Krueger D, Vallarta-Ast N (2003) Am overlying fat panniculus affects femur bone mass measurement. J Clin Densitom 6:199–204

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Funding

This study was supported by Canadian Institutes of Health Research grant number 86642.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Cawsey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cawsey, S., Padwal, R., Sharma, A.M. et al. Women with severe obesity and relatively low bone mineral density have increased fracture risk. Osteoporos Int 26, 103–111 (2015). https://doi.org/10.1007/s00198-014-2833-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-014-2833-z

Keywords

Navigation