Skip to main content

Advertisement

Log in

Treatment strategies for proximal femur fractures in osteoporotic patients

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Fractures of the proximal end of the femur, together with vertebral fractures, are greatly exacerbated by osteoporosis and can be regarded as the most typical and most serious complications of this disease. The demand for prompt mobilisation with full loading of the affected limb, combined with a desire for the gentlest of treatments, becomes increasingly difficult to meet in ageing patients with advanced osteoporosis. The advantages of osteosynthesis in respect to these demands when operating on elderly patients with fractures do not apply due to the inability of the osteoporotic bone to hold the osteosynthetic components sufficiently until fracture healing occurs. This inability is related to the anatomy of the proximal end of the femur and its loading patterns. Under eccentric loading, high bending loads occur, leading to failure of the osteosynthetic anchorage at the center of the femoral head. This leads subsequently to stressful revision operations for the patient. The prosthetic replacement is a good option in cases of dislocated intracapsular fractures, but in cases of trochanteric fractures it is still debated. Therefore, it is vital for the trauma surgeon to have specific knowledge of the patient’s bone quality in order to optimise the result of the preferred procedure. With reference to our own experimental research and a study of the current literature, this knowledge can be summarised as follows: the most stable anchorage for the implant is achieved by placing the implant through the midpoint of the femoral head (highest bone mineral density) or just below (“best backing”). Anchoring femoral head implants so that they are stable in rotation within the head–neck fragment will significantly raise their load bearing capacity. This is also true for intramedullary load bearing devices in trochanteric fractures. The distance between the load-bearing device in the femoral neck and the articular surface is inversely correlated to the stability at yield, as other studies have already shown. There seems to be a limit for a successful realisation of an osteosynthesis that lies at a femoral head bone mineral density of 250 mg/cm3 calcium-hydroxyapatite (CaHAp). Nevertheless, high precision surgery in regard to fracture reduction and implant placement is a essential requirement for a successful osteosynthesis. Reproducible local measurements of bone mineral density and trabecular alterations, as well as quick screening methods, are very much desired by the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bonnaire F, Kuner EH, Lorz W (1995) Femoral neck fractures in adults: joint sparing operations. II. The significance of surgical timing and implant for development of aseptic femur head necrosis. Unfallchirurg 98(5):259–264

    CAS  PubMed  Google Scholar 

  2. Kuner EH, Lorz W, Bonnaire F (1995) Femoral neck fractures in adults: joint sparing operations. I. Results of an AO collective study with 328 patients. Unfallchirurg 98(5):251–258

    CAS  PubMed  Google Scholar 

  3. Rodan GA, Reszka AA (2003) Osteoporosis and bisphophonates. J Bone Joint Surg [Am] 85:8–12

    Google Scholar 

  4. Gardner MJ, Flik KR, Mooar P, Lane MJ (2002) Improvement in the undertreatment of osteoporosis following hip fracture. J Bone Joint Surg [Am] 84(8):1342–1348

    Google Scholar 

  5. Smith MD, Cody DD, Goldstein StA, Cooperman AM, Matthews LS, Flynn MJ (1992) Proximal femoral bone density and its correlation to fracture load and hip screw penetration. Clin Orthop 283:244–251

    PubMed  Google Scholar 

  6. Al-Yassari G, Langstaff RJ, Jones JW, Al-Lami M (2002) The AO/ASIF proximal femoral nail (PFN) for the treatment of unstable trochanteric femoral fracture. Injury 33(5):395–399

    Article  CAS  PubMed  Google Scholar 

  7. Audige L, Hanson B, Swiontkowski MF (2003) Implant-related complications in the treatment of unstable intertrochanteric fractures: meta-analysis of dynamic screw versus dynamic screw-intramedullary nail devices. Int Orthop 27(4):197–203

    Article  CAS  PubMed  Google Scholar 

  8. Baumgaertner MR, Solberg BD (1997) Awareness of tip-apex distance reduces failure of fixation of trochanteric fractures of the hip. J Bone Joint Surg [Br] 79(6):969–971

    Google Scholar 

  9. Suckel A, Helwig P, Schirmer A, Garbrecht M, Mocke U (2003) Complication rate in the treatment of inter- and subtrochanteric femur fractures with two intramedullary osteosyntheses. Comparison of a conventional nailing system and a rotation safe fixation of the head-neck-fragment, gamma nail and gliding nail. Zentralbl Chir 128(3):212–217

    Article  CAS  PubMed  Google Scholar 

  10. Werner-Tutschku W, Lajtai G, Schmiedhuber G, Lang T, Pirkl C, Othner E (2002) Intra- and perioperative complications in the stabilization of per- and subtrochanteric femoral fractures by means of PFN. Unfallchirurg 105(10):881–885

    Article  CAS  PubMed  Google Scholar 

  11. Johansson T, Jacobsson SA, Ivarsson I, Knutsson A, Wahlstrom O (2000) Internal fixation versus total hip arthroplasty in the treatment of displaced femoral neck fractures: a prospective randomized study of 100 hips. Acta Orthop Scand 71(6):597–602

    Article  CAS  PubMed  Google Scholar 

  12. Szita J, Cserhati P, Bosch U, Manninger J, Bodzay T, Fekete K (2002) Intracapsular femoral neck fractures: the importance of early reduction and stable osteosynthesis. Injury 33(Suppl 3):C414–6

    Article  Google Scholar 

  13. Kawaguchi S, Sawada K, Nabeta Y (1998) Cutting-out of the lag screw after internal fixation with the Asiatic gamma nail. Injury 29(1):47–53

    Article  CAS  PubMed  Google Scholar 

  14. Haynes RC, Poll RG, Miles AW, Weston RB (1997) Failure of femoral head fixation: a cadaveric analysis of lag screw cut-out with gamma locking nail and AO dynamic hip screw. Injury 28(5–6):337–341

    Google Scholar 

  15. Barrios C, Brostrom LA, Stark A, Walheim G (1993) Healing complications after internal fixation of trochanteric hip fractures: the prognostic value of osteoporosis. J Orthop Trauma 7(5):438–442

    CAS  PubMed  Google Scholar 

  16. Schwab E, Höntzsch D, Weise K (1998) PFN: Die Versorgung instabiler per- und subtrochantärer Femurfrakturen mit dem Proximalen Femurnagel (PFN). Aktuelle Traumatol 28:56–60

    Google Scholar 

  17. Campion EW, Jette AM, Cleary PD, Harris BA (1987) Hip fracture: a prospective study of hospital course, complications, and costs. J Gen Intern Med 2(2):78–82

    CAS  PubMed  Google Scholar 

  18. Dalen N, Jakobsson B (1985) Factors influencing the incidence of reoperation after femoral neck fractures. Int Orthop 9(4):235–237

    CAS  PubMed  Google Scholar 

  19. Parker MJ, Khan RJK, Crawford J, Pryor GA (2002) Hemiarthroplasty versus internal fixation for displaced intracapsular hip fractures in the elderly. J Bone Joint Surg [Br] 84(B):1150–1155

    Google Scholar 

  20. Lee RL, Dacre JE, Hart DJ, Spector TD (2002) Femoral neck trabecular patterns predict osteoporotic fractures. Med Phys 29(7):1391–1396

    Article  PubMed  Google Scholar 

  21. Frangenheim P (1906) Studien über Schenkelhalsfrakturen und die Vorgänge bei der Heilung. Dtsch Zeitschr Chir 83:401–455

    Google Scholar 

  22. Schmorl G (1924) Die pathologische Anatomie der Schenkelhalsfrakturen. Münch Med Wschr 40:1381–1385

    Google Scholar 

  23. Banks H (1962) Healing of the femoral neck fracture. Conference on aseptic necrosis of the femoral head. National Institute of Health, St Louis, p 465

  24. Raaymarkers ELFB (2002) The non-operative treatment of impacted femoral neck fractures. Injury. 33(Suppl 3):C8–14

    Google Scholar 

  25. Manninger J, Kasar Gy, Fekete GY, Nagy E, Zolczer L, Frenyo S (1985) Avoidance of avascular necrosis of the femoral head, following fractures of the femoral neck, by early reduction and internal fixation. Injury 16:437–448

    Article  CAS  PubMed  Google Scholar 

  26. Thorngren K-G, Hommel A, Norrman J, Thorngren J, Wingstrand H (2002) Epidemiology of femoral neck fractures. Injury 33:S-C1–S-C7

    Article  Google Scholar 

  27. Parker MJ (2002) Evidence-based results depending on the implant used for stabilizing femoral neck fractures. Injury 33(Suppl 3):C15–18

    Article  PubMed  Google Scholar 

  28. Lotz JC, Hayes WC (1990) The use of quantitative computed tomography to estimate risk of fracture of the hip from falls. J Bone Joint Surg [Am] 72(5):689–700

    Google Scholar 

  29. Lotz JC, Gerhart TN, Hayes WC (1990) Mechanical properties of trabechular bone from the proximal femur: a quantitative CT study. J Comput Assist Tomogr 14:107–114

    CAS  PubMed  Google Scholar 

  30. Bonnaire FA, Buitrago-Tellez C, Schmal H, Götze B, Weber AT (2002) Correlation of bone density and geometric parameter to mechanical strength of the femoral neck. Injury 33(Suppl 3):C47–53

    Article  PubMed  Google Scholar 

  31. Sjostedt A, Zetterberg C, Hansson T, Hult E, Ekstrom L (1994) Bone mineral content and fixation strength of femoral neck fractures. A cadaver study. Acta Orthop Scand 65(2):161–165

    CAS  PubMed  Google Scholar 

  32. Masud T, Jawed S, Doyle D V, Spector T (1995) A population study of the screening potential of assessment of trabecular pattern of the femoral neck (Singh-Index): the Chingford Study. Br J Radiol 68:389–393

    CAS  PubMed  Google Scholar 

  33. Koot VCM, Kesselaer SMMJ, Clevers GJ, de Hooge P, Weits T, van der Werken C (1996) Evaluation of the Singh index for measuring osteoporosis. J Bone Joint Surg [Br] 78-B:831–834

    Google Scholar 

  34. Cordey J, Schneider M, Belendez C, Ziegler WJ, Rahn BA, Perren SM (1992) Effect of bone mineral size, not density, on the stiffness of the proximal part of normal and osteoporotic human femora. J Bone Miner Res 7(2):437–444

    Google Scholar 

  35. Testi D, Viceconti M, Cappello A, Gnudi S (2002) Prediction of hip fracture can be significantly improved by a single biomechanical indicator. Ann Biomed Eng 30(6):801–807

    Article  PubMed  Google Scholar 

  36. Bergot C, Bousson V, Meunier A, Laval-Jeantet M, Laredo JD (2002) Hip fracture risk and proximal femur geometry from DXA scans. Osteoporos Int 13(7):542–550

    Article  CAS  PubMed  Google Scholar 

  37. Kaptoge S, Dalzell N, Loveridge N, Beck TJ, Khaw KT, Reeve J (2003) Effects of gender, anthropometric variables, and aging on the evolution of hip strength in men and women aged over 65. Bone 32(5):561–570

    Article  PubMed  Google Scholar 

  38. Bonnaire FA, Weber AT (2002) Analysis of fracture gap changes, dynamic and static stability of different osteosynthetic procedures in the femoral neck. Injury 33(Suppl 3):C24–32

    Article  PubMed  Google Scholar 

  39. Bonnaire F, Hönninger A, Kuner EH (1995) Mechanische Instabilität von Osteosynthesen nach instabilen medialen Schenkelhalsfrakturen. Langenbecks Arch Chir Suppl Kongreßbericht 1995:1506

  40. Haidukewych GJ, Berry DJ (2003) Hip arthroplasty for salvage of failed treatment of intertrochanteric hip fractures. J Bone Joint Surg [Am] 85-A(5):899–904

  41. Claes L, Becker C, Simnacher M, Hoellen I (1995) Improvement in the primary stability of the dynamic hip screw osteosynthsis in unstable, pertrochanteric femoral femoral fractures of osteoporotic bones by a new glass inomer cement. Unfallchirurg 98(3):118–123

    CAS  PubMed  Google Scholar 

  42. Bartucci EJ, Gonzalez MH, Cooperman DR, Freedberg HI, Barmada R, Laros GS (1985) The effect of adjunctive methylmethacrylate on failures of fixation and function in patients with intertrochanteric fractures and osteoporosis. J Bone Joint Surg [Am] 67(7):1094–1107

    Google Scholar 

  43. Bergmann G, Graichen F, Rohlmann A (1993) Hip joint loading during walking and running, measured in two patients. J Biomech 29:969–990

    Article  Google Scholar 

  44. Blair B, Koval KJ, Kummer F, Zuckerman JD (1994) Basicervical fractures of the proximal femur. A biomechanical study of 3 internal fixation techniques. Clin Orthop 306:256–263

    PubMed  Google Scholar 

  45. Baumgaertner MR, Curtin SL, Lindskog DM, Keggi JM (1995) The value of the tip-apex distance inpredicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg [Am] 77(7):1058–1064

    Google Scholar 

  46. Götze B, Bonnaire FA, Weise K, Friedl HP (1998) Belastbarkeit von Osteosynthesen bei instabilen per- und subtrochanteren Femurfrakturen: experimentelle Untersuchungen mit PFN, Gamma-Nagel, DHS/Trochanterstabilisierungsplatte, 95° Kondylenplatte und UFN/Spiralklinge. Aktuelle Traumatol 28:197–204

    Google Scholar 

  47. Chan KC, Gill GS (2000) Cemented hemiarthroplasties for elderly patients with intertrochanteric fractures. Clin Orthop 371:206–215

    Article  PubMed  Google Scholar 

  48. Rodop O, Kiral A, Kaplan H, Akmaz I (2002) Primary bipolar hemiprosthesis for unstable intertrochanteric fractures. Int Orthop 26(4 Epub):233–237

    Article  PubMed  Google Scholar 

  49. Haentjens P, Casteleyn PP, Opdecam P (1994) Primary bipolar arthroplasty or total hip arthroplasty for the treatment of unstable intertrochanteric and subtrochanteric fractures in elderly patients. Acta Orthop Belg 60(Suppl 1):124–128

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Bonnaire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonnaire, F., Zenker, H., Lill, C. et al. Treatment strategies for proximal femur fractures in osteoporotic patients. Osteoporos Int 16 (Suppl 2), S93–S102 (2005). https://doi.org/10.1007/s00198-004-1746-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-004-1746-7

Keywords

Navigation