Skip to main content
Log in

Bone mineral mass in males and females with and without Down syndrome

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Previous bone comparison studies between subjects with and without Down syndrome (DS) were performed using bone mineral density (BMD) as the dependent variable, and mainly focused on lumbar spine region. The purpose of this study was to compare bone mineral mass adjusted for bone and body size, in limbs, lumbar spine, and femoral neck between males and females with and without DS. Subjects were 66 females (33 with DS) and 68 males (34 with DS) aged 14–40 years. Analysis of covariance (ANCOVA) was used to analyze the main and interaction effects of gender and condition on bone mineral mass. For this purpose, adjusted bone mineral content (BMC) (for bone area, height, and age), volumetric bone mineral density (vBMD) (for age), and composite indices of femoral neck strength (for age), were used as the dependent variables, corrected additionally for body composition variables selected by regression analysis. ANCOVA revealed lower lumbar spine vBMD in DS than in control subjects with (−5%, P=0.013), or without body weight adjustments (−6%, P=0.003). In femoral neck, the mean of each strength measure was also lower in DS than in control subjects. Mean differences between groups were, with and without additional adjustments for fat mass, respectively, −8% (P=0.009), and −13% (P<0.001) for compressive strength, −11% (P=0.036), and −16% (P=0.004) for bending strength, and −7% (P=0.031), and −11% (P=0.002) for impact strength. These lumbar spine and femoral neck differences between groups were highest in young adults (>20 years) and not significant in adolescents. No interaction effect was observed between gender and condition. In conclusion, DS was shown to be a risk factor for low vBMD in lumbar spine, and for diminished bone strength relative to the loads that the femoral neck must bear. Body composition did not reach statistical significance as predictor of bone differences in these sites between subjects with and without DS, suggesting that other factors may be involved in this detrimental bone status, particularly in young adults compared with adolescents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rosen CJ (2000) Pathophysiology of osteoporosis. Clin Lab Med 20:455–468

    CAS  PubMed  Google Scholar 

  2. Faulkner KG (2000) Bone matters: are density increases necessary to reduce fracture risk? J Bone Miner Res 15:183–187

    CAS  PubMed  Google Scholar 

  3. Nelson DA, Koo WW (1999) Interpretation of absorptiometric bone mass measurements in the growing skeleton: issues and limitations. Calcif Tissue Int 65:1–3

    Article  CAS  PubMed  Google Scholar 

  4. Prentice A, Parsons TS, Cole JT (1994) Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am J Clin Nutr 60:837–842

    CAS  PubMed  Google Scholar 

  5. Kao CH, Chen CC, Wang SJ, Yeh SH (1992) Bone mineral density in children with Down’s syndrome detected by dual photon absorptiometry. Nucl Med Commun 13:773–775

    CAS  PubMed  Google Scholar 

  6. Sepúlveda D, Allison DB, Gomez JE, Kreibich K, Brown RA, Pierson Jr. RN, Heymsfield SB (1995) Low spinal and pelvic bone mineral density among individuals with Down syndrome. Am J Ment Retard 100:109–114

    PubMed  Google Scholar 

  7. Angelopoulou N, Souftas V, Sakadamis A, Mandroukas K (1999) Bone mineral density in adults with Down’s syndrome. Eur Radiol 9:648–651

    Article  CAS  PubMed  Google Scholar 

  8. Angelopoulou N, Matziari C, Tsimaras V, Sakadamis A, Souftas V, Mandroukas K (2000) Bone mineral density and muscle strength in young men with mental retardation (with and without Down syndrome). Calcif Tissue Int 66:176–180

    Article  CAS  PubMed  Google Scholar 

  9. Center J, Beange H, McElduff A (1998) People with mental retardation have an increased prevalence of osteoporosis: a population study. Am J Ment Retard 103:19–28

    Article  CAS  PubMed  Google Scholar 

  10. Baumgartner RN, Stauber PM, Koehler KM, Romero L, Garry PJ (1996) Associations of fat and muscle masses with bone mineral in elderly men and women. Am J Clin Nutr 63:365–372

    CAS  PubMed  Google Scholar 

  11. Heymsfield SB, Smith R, Aulet M, Bensen B, Lichtman S, Wang J, Pierson RN Jr (1990) Appendicular skeletal muscle mass: Measurement by dual-photon absorptiometry. Am J Clin Nutr 52:214–218

    CAS  PubMed  Google Scholar 

  12. Wang Z-M, Gallagher D, Nelson ME, Matthews DE, Heymsfield SB (1996) Total-body skeletal muscle mass: evaluation of 24-h urinary creatinine excretion by computerized axial tomography. Am J Clin Nutr 63:863–869

    CAS  PubMed  Google Scholar 

  13. Gravholt CH, Lauridsen AL, Brixen K, Mosekilde L, Heickendorff L, Christiansen JS (2002) Marked disproportionality in bone size and mineral, and distinct abnormalities in bone markers and calcitropic hormones in adult turner syndrome: a cross-sectional study. J Clin Endocrinol Metab 87:2798–2808

    Article  CAS  PubMed  Google Scholar 

  14. Karlamangla AS, Barrett-Connor E, Young J, Greendale GA (2004) Hip fracture risk assessment using composite indices of femoral neck strength: the Rancho Bernardo study. Osteoporos Int 15:62–70

    Article  PubMed  Google Scholar 

  15. Blake GM, Wahner HW, Fogelman I (1999) The evaluation of osteoporosis: dual energy X-ray absorptiometry and ultrasound in clinical practice, 2nd edn. Martin Dunitz Ltd, London

    Google Scholar 

  16. Faulkner RA, McCulloch RG, Fyke SL, De Coteau WE, McKay HA, Bailey DA, Houston CS, Wilkinson AA (1995) Comparison of areal and estimated volumetric bone mineral density values between older men and women. Osteoporos Int 5:271–275

    CAS  PubMed  Google Scholar 

  17. Henry YM, Eastell R (2000) Ethnic and gender differences in bone mineral density and bone turnover in young adults: effect of bone size. Osteoporos Int 11:512–517

    Article  CAS  PubMed  Google Scholar 

  18. Warner JT, Cowan FJ, Dunstan FD, Evans WD, Webb DK, Gregory JW (1998) Measured and predicted bone mineral content in healthy boys and girls aged 6–18 years: adjustment for body size and puberty. Acta Paediatr 87:244–249

    Article  CAS  PubMed  Google Scholar 

  19. Looker AC, Beck T, Orwoll ES (2001) Does body size account for gender differences in femur bone density and geometry? J Bone Miner Res 16:1291–1299

    CAS  PubMed  Google Scholar 

  20. Wang M-C, Aguirre M, Bhudhikanok GS, Kendall CG, Kirsch S, Marcus R, Bachrach LK (1997) Bone mass and hip axis length in healthy Asian, black, Hispanic, and white American youths. J Bone Miner Res 12:1922–1935

    CAS  PubMed  Google Scholar 

  21. Seeman E (2001) Clinical review 137: sexual dimorphism in skeletal size, density, and strength. J Clin Endocrinol Metab 86:4576–4584

    Article  CAS  PubMed  Google Scholar 

  22. Barden HS (1983) Growth and development of selected hard tissues in Down syndrome. Hum Biol 55:539–576

    CAS  PubMed  Google Scholar 

  23. van Allen MI, Fung J, Jurenka SB (1999) Health care concerns and guidelines for adults with Down syndrome. Am J Med Genet 89:100–110

    Article  PubMed  Google Scholar 

  24. Tannenbaum TN, Lipworth L, Baker S (1989) Risk of fractures in an intermediate care facility for persons with mental retardation. Am J Ment Retard 93:444–451

    CAS  PubMed  Google Scholar 

  25. Reid IR (2002) Relationships among body mass, its components, and bone. Bone 31:547–555

    Article  CAS  PubMed  Google Scholar 

  26. Ross PD, He Y-F, Yates AJ, Coupland C, Ravn P, McClung M, Thompson D, Wasnich RD (1996) Body size accounts for most differences in bone density between Asian and Caucasian women. Calcif Tissue Int 59:339–343

    Article  CAS  PubMed  Google Scholar 

  27. Michaelsson K, Bergstrom R, Mallmin H, Holmberg L, Wolk A, Ljunghall S (1996) Screening for osteopenia and osteoporosis by body composition. Osteoporos Int 6:120–126

    CAS  PubMed  Google Scholar 

  28. Ohmura A, Kushida K, Yamazaki K, Okamoto S, Katsuno H, Inoue T (1997) Bone density and body composition in Japanese women. Calcif Tissue Int 60:117–122

    Article  Google Scholar 

  29. Chen Z, Lohman TG, Stini WA, Ritenbaugh C, Aickin M (1997) Fat or lean tissue mass: which one is the major determinant of bone mineral mass in healthy postmenopausal women? J Bone Miner Res 12:144–151

    CAS  PubMed  Google Scholar 

  30. Alekel L, Clasey JL, Fehling PC, Weigel RM, Boileau RA, Erdman JW, Stillman R (1995) Contributions of exercise, body composition and age to bone mineral density in premenopausal women. Med Sci Sports Exerc 27:1477–1485

    CAS  PubMed  Google Scholar 

  31. Aloia JF, Vaswani A, Ma R, Flaster E (1995) To what extent is bone mass determined by fat-free or fat mass? Am J Clin Nutr 61:1110–1114

    CAS  PubMed  Google Scholar 

  32. Nelson DA, Simpson PM, Johnson CC, Barondess DA, Kleerekoper M (1997) The accumulation of whole body skeletal mass in third- and fourth-grade children: effects of age, gender, ethnicity, and body composition. Bone 20:73–78

    Article  CAS  PubMed  Google Scholar 

  33. Nichols DL, Sanborn CF, Bonnick SL, Gench B, DiMarco N (1995) Relationship of regional body composition to bone mineral density in college females. Med Sci Sports Exerc 27:178–182

    CAS  PubMed  Google Scholar 

  34. Hughes VA, Frontera WR, Dallal GE, Lutz KJ, Fisher EC, Evans WJ (1995) Muscle strength and body composition: associations with bone density in older subjects. Med Sci Sports Exerc 27:967–974

    CAS  PubMed  Google Scholar 

  35. Rosen CJ (2000) Pathogenesis of osteoporosis. Bailliere’s Best Pract Res Clin Endocrinol Metab 14:181–193

  36. Sakadamis A, Angelopoulou N, Matziari C, Papameletiou V, Souftas V (2002) Bone mass, gonadal function and biochemical assessment in young men with trisomy 21. Eur J Obstet Gynecol Reprod Biol 100:208–212

    Article  CAS  PubMed  Google Scholar 

  37. Grimwood JS, Kumar A, Bickerstaff DR, Suvarna SK (2000) Histological assessment of vertebral bone in a Down’s syndrome adult with osteoporosis. Histopathology 36:279–280

    Article  CAS  PubMed  Google Scholar 

  38. Hestnes A, Stovner LJ, Husoy O, Folling I, Fougner KJ, Sjaastad O (1991) Hormonal and biochemical disturbances in Down’s syndrome. J Ment Defic Res 35:179–193

    PubMed  Google Scholar 

  39. Mosekilde L, Eriksen EF, Charles P (1990) Effects of thyroid hormones on bone and mineral metabolism. Endocrinol Metab Clin N Am 19:35–63

    CAS  Google Scholar 

  40. Soyka LA, Fairfield WP, Klibanski A (2000) Clinical review 117: Hormonal determinants and disorders of peak bone mass in children. J Clin Endocrinol Metab 85:3951–3963

    Article  CAS  PubMed  Google Scholar 

  41. Waters KM, Spelsberg TC (1999) Gonadol steroids. In: Favus M (ed.) Primer on metabolic bone diseases and disorders of mineral metabolism, 4th edn. Lippincott Williams & Wilkins, Philadelphia

  42. Frost HM (1997) Why do marathon runners have less bone than weight lifters? A vital-biomechanical view and explanation. Bone 20:183–189

    Article  CAS  PubMed  Google Scholar 

  43. Hamrick MW, McPherron AC, Lovejoy CO, Hudson J (2000) Femoral morphology and cross-sectional geometry of adult myostatin-deficient mice. Bone 27:343–349

    Article  CAS  PubMed  Google Scholar 

  44. Bailey DA, Martin AD, McKay HA, Whiting S, Mirwald R (2000) Calcium accretion in girls and boys during puberty: a longitudinal analysis. J Bone Miner Res 15:2245–2250

    CAS  PubMed  Google Scholar 

  45. Bass S, Pearce G, Bradney M, Hendrich E, Delmas PD, Harding A, Seeman E (1998) Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res 13:500–507

    CAS  PubMed  Google Scholar 

  46. Bradney M, Pearce G, Naughton G, Sullivan C, Bass S, Beck T, Carlson J, Seeman E (1998) Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study. J Bone Miner Res 13:1814–1821

    CAS  PubMed  Google Scholar 

  47. Haapasalo H, Kannus P, Sievanen H, Pasanen M, Uusi-Rasi K, Heinonen A, Oja P, Vuori I (1998) Effect of long-term unilateral activity on bone mineral density of female junior tennis players. J Bone Miner Res 13:310–319

    CAS  PubMed  Google Scholar 

  48. Petit MA, McKay HA, MacKelvie KJ, Heinonen A, Khan KM, Beck TJ (2002) A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res 17:363–372

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Baptista.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baptista, F., Varela, A. & Sardinha, L.B. Bone mineral mass in males and females with and without Down syndrome. Osteoporos Int 16, 380–388 (2005). https://doi.org/10.1007/s00198-004-1687-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-004-1687-1

Keywords

Navigation