Skip to main content
Log in

Proximal tibial morphology and its correlation with osteochondritis dissecans of the knee

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The relationship of proximal tibial morphology to the presence of femoral osteochondritis dissecans (OCD) lesions is unknown. This radiographic study tested the null hypothesis that knees with unilateral medial or lateral OCD lesions would have no difference in the slope of their medial, lateral, or posterior tibial plateau compared with unaffected knees.

Methods

There were 72 patients with unilateral OCD lesions of the medial or lateral femoral condyle seen at our institution from 2005 to 2011. On AP and lateral radiographs of the knee, three examiners conducted independent measurements of the tibial plateau posterior slope, as well as medial and lateral slope as measured from the peak of the tibial spine to the edge of the plateau on the side of the corresponding OCD lesion. Measurements were repeated on normal contralateral and matched control knees.

Results

Knees with medial femoral condyle OCD lesions had greater medial tibial slope compared with normal contralateral knees (p = 0.007) and normal controls (p < 0.04). Knees with lateral femoral condyle OCD lesions had no significant difference in lateral tibial slope compared with the contralateral knee or matched controls. Posterior slope was greater in knees with medial OCD lesions than matched controls (p = 0.007). Intraclass correlation coefficients demonstrated consistency between observers for all measurements.

Conclusion

An assessment of proximal tibial morphology demonstrated greater medial and posterior tibial slope in knees with medial OCD lesions compared with normal knees. The technique for measuring medial and lateral tibial slope was reliable among evaluators. The clinical relevance is that proximal tibial morphology may have a relationship with OCD lesions.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Balcarek P, Terwey A, Jung K et al (2013) Influence of tibial slope asymmetry on femoral rotation in patients with lateral patellar instability. Knee Surg Sports Traumatol Arthrosc 21:2155–2163

    Article  PubMed Central  PubMed  Google Scholar 

  2. Bramer JA, Maas M, Dallinga RJ, te Slaa RL, Vergroesen DA (2004) Increased external tibial torsion and osteochondritis dissecans of the knee. Clin Orthop Relat Res 422:175–179

    Article  PubMed  Google Scholar 

  3. Brazier J, Migaud H, Gougeon F, Cotten A, Fontaine C, Duquennoy A (1996) Evaluation of methods for radiographic measurement of the tibial slope. A study of 83 healthy knees. Rev Chir Orthop Reparatrice Appar Mot 82:195–200

    CAS  PubMed  Google Scholar 

  4. Bruns J, Klima H, Rosenbach B, Lussenhop S (1993) Long-term results after gluing of osteochondral fragments and osteochondrosis dissecans. Langenbecks Arch Chir 378:160–166

    Article  CAS  PubMed  Google Scholar 

  5. Cooke TD, Pichora D, Siu D, Scudamore RA, Bryant JT (1989) Surgical implications of varus deformity of the knee with obliquity of joint surfaces. J Bone Joint Surg Br 71:560–565

    CAS  PubMed  Google Scholar 

  6. Deie M, Ochi M, Sumen Y et al (2006) Relationship between osteochondritis dissecans of the lateral femoral condyle and lateral menisci types. J Pediatr Orthop 26:79–82

    Article  PubMed  Google Scholar 

  7. Green JP (1966) Osteochondritis dissecans of the knee. J Bone Joint Surg Br 48:82–91

    CAS  PubMed  Google Scholar 

  8. Green WT, Banks HH (1953) Osteochondritis dissecans in children. J Bone Joint Surg Am 35-A:26–47

    CAS  PubMed  Google Scholar 

  9. Hashemi J, Chandrashekar N, Gill B et al (2008) The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Joint Surg Am 90:2724–2734

    Article  PubMed Central  PubMed  Google Scholar 

  10. Hashemi J, Chandrashekar N, Mansouri H et al (2010) Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med 38:54–62

    Article  PubMed  Google Scholar 

  11. Hudek R, Fuchs B, Regenfelder F, Koch PP (2011) Is noncontact ACL injury associated with the posterior tibial and meniscal slope? Clin Orthop Relat Res 469:2377–2384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Hughston JC, Hergenroeder PT, Courtenay BG (1984) Osteochondritis dissecans of the femoral condyles. J Bone Joint Surg Am 66:1340–1348

    CAS  PubMed  Google Scholar 

  13. Jacobi M, Wahl P, Bouaicha S, Jakob RP, Gautier E (2010) Association between mechanical axis of the leg and osteochondritis dissecans of the knee: radiographic study on 103 knees. Am J Sports Med 38:1425–1428

    Article  PubMed  Google Scholar 

  14. Kilcoyne KG, Dickens JF, Rue JP, Keblish DJ (2013) Bilateral combined discoid lateral menisci and lateral femoral condyle osteochondritis dissecans lesions in a division i varsity athlete: a case report. J Knee Surg 26(Suppl 1):S58–S62

    Google Scholar 

  15. Koch S, Kampen WU, Laprell H (1997) Cartilage and bone morphology in osteochondritis dissecans. Knee Surg Sports Traumatol Arthrosc 5:42–45

    Article  CAS  PubMed  Google Scholar 

  16. Kocher MS, Tucker R, Ganley TJ, Flynn JM (2006) Management of osteochondritis dissecans of the knee: current concepts review. Am J Sports Med 34:1181–1191

    Article  PubMed  Google Scholar 

  17. Linden B (1976) The incidence of osteochondritis dissecans in the condyles of the femur. Acta Orthop Scand 47:664–667

    Article  CAS  PubMed  Google Scholar 

  18. Lipps DB, Wilson AM, Ashton-Miller JA, Wojtys EM (2012) Evaluation of different methods for measuring lateral tibial slope using magnetic resonance imaging. Am J Sports Med 40:2731–2736

    Article  PubMed Central  PubMed  Google Scholar 

  19. Pascual-Garrido C, Moran CJ, Green DW, Cole BJ (2013) Osteochondritis dissecans of the knee in children and adolescents. Curr Opin Pediatr 25:46–51

    Article  PubMed  Google Scholar 

  20. Shea KG, Jacobs JC Jr, Carey JL, Anderson AF, Oxford JT (2013) Osteochondritis dissecans knee histology studies have variable findings and theories of etiology. Clin Orthop Relat Res 471:1127–1136

    Article  PubMed Central  PubMed  Google Scholar 

  21. Shultz SJ, Schmitz RJ (2012) Tibial plateau geometry influences lower extremity biomechanics during landing. Am J Sports Med 40:2029–2036

    Article  PubMed  Google Scholar 

  22. Turner MS (1994) The association between tibial torsion and knee joint pathology. Clin Orthop Relat Res 302:47–51

    PubMed  Google Scholar 

  23. Utzschneider S, Goettinger M, Weber P et al (2011) Development and validation of a new method for the radiologic measurement of the tibial slope. Knee Surg Sports Traumatol Arthrosc 19:1643–1648

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Wechter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wechter, J.F., Sikka, R.S., Alwan, M. et al. Proximal tibial morphology and its correlation with osteochondritis dissecans of the knee. Knee Surg Sports Traumatol Arthrosc 23, 3717–3722 (2015). https://doi.org/10.1007/s00167-014-3289-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-014-3289-6

Keywords

Navigation