Skip to main content
Log in

Normative rearfoot motion during barefoot and shod walking using biplane fluoroscopy

  • Ankle
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The ankle rearfoot complex consists of the ankle and subtalar joints. This is an observational study on two test conditions of the rearfoot complex. Using high-speed biplane fluoroscopy, we present a method to measure rearfoot kinematics during normal gait and compare rearfoot kinematics between barefoot and shod gait.

Methods

Six male subjects completed a walking trial while biplane fluoroscopy images were acquired during stance phase. Bone models of the calcaneus and tibia were reconstructed from computed tomography images and aligned with the biplane fluoroscopy images. An optimization algorithm was used to determine the three-dimensional position of the bones and calculate rearfoot kinematics.

Results

Peak plantarflexion was higher (barefoot: 9.1°; 95 % CI 5.2:13.0; shod: 5.7°; 95 % CI 3.6:7.8; p = 0.015) and neutral plantar/dorsiflexion occurred later in the stance phase (barefoot: 31.1 %; 95 % CI 23.6:38.6; shod: 17.7 %; 95 % CI 14.4:21.0; p = 0.019) during barefoot walking compared to shod walking. An eversion peak of 8.7° (95 % CI 1.9:15.5) occurred at 27.8 % (95 % CI 18.4:37.2) of stance during barefoot walking, while during shod walking a brief inversion to 1.2° (95 % CI −2.1:4.5; p = 0.021) occurred earlier (11.5 % of stance; 95 % CI 0.2:22.8; p = 0.008) during stance phase. The tibia was internally rotated relative to the calcaneus throughout stance phase in both conditions (barefoot: 5.1° (95 % CI −1.4:11.6); shod: 3.6° (95 % CI −0.4:7.6); ns.).

Conclusions

Biplane fluoroscopy can allow for detailed quantification of dynamic in vivo ankle kinematics during barefoot and shod walking conditions. This methodology could be used in the future to study hindfoot pathology after trauma, for congenital disease and after sports injuries such as instability.

Level of evidence

II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anderst W, Zauel R, Bishop J, Demps E, Tashman S (2009) Validation of three-dimensional model-based tibio-femoral tracking during running. Med Eng Phys 31(1):10–16

    Article  PubMed  PubMed Central  Google Scholar 

  2. Barg A, Tochigi Y, Amendola A, Phisitkul P, Hintermann B, Saltzman CL (2012) Subtalar instability: diagnosis and treatment. Foot Ankle Int 33(2):151–160

    Article  PubMed  Google Scholar 

  3. Bey MJ, Kline SK, Zauel R, Lock TR, Kolowich PA (2008) Measuring dynamic in vivo glenohumeral joint kinematics: technique and preliminary results. J Biomech 41(3):711–714

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bey MJ, Zauel R, Brock SK, Tashman S (2006) Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics. J Biomech Eng 128(4):604–609

    Article  PubMed  PubMed Central  Google Scholar 

  5. Caputo AM, Lee JY, Spritzer CE, Easley ME, DeOrio JK, Nunley JA 2nd, DeFrate LE (2009) In vivo kinematics of the tibiotalar joint after lateral ankle instability. Am J Sports Med 37(11):2241–2248

    Article  PubMed  PubMed Central  Google Scholar 

  6. Clanton TO (1989) Instability of the subtalar joint. Orthop Clin North Am 20(4):583–592

    CAS  PubMed  Google Scholar 

  7. Conti G, Cristofolini L, Juszczyk M, Leardini A, Viceconti M (2008) Comparison of three standard anatomical reference frames for the tibia–fibula complex. J Biomech 41:3384–3389

    Article  PubMed  Google Scholar 

  8. Coughlan G, Caulfield B (2007) A 4-week neuromuscular training program and gait patterns at the ankle joint. J Athl Train 42(1):51–59

    PubMed  PubMed Central  Google Scholar 

  9. de Asla RJ, Kozanek M, Wan L, Rubash HE, Li G (2009) Function of anterior talofibular and calcaneofibular ligaments during in vivo motion of the ankle joint complex. J Orthop Surg Res 4:7

    Article  PubMed  PubMed Central  Google Scholar 

  10. de Asla RJ, Wan L, Rubash HE, Li G (2006) Six DOF in vivo kinematics of the ankle joint complex: application of a combined dual-orthogonal fluoroscopic and magnetic resonance imaging technique. J Orthop Res 24(5):1019–1027

    Article  PubMed  Google Scholar 

  11. Giphart JE, Elser F, Dewing CB, Torry MR, Millett PJ (2012) The long head of the biceps tendon has minimal effect on in vivo glenohumeral kinematics: a biplane fluoroscopy study. Am J Sports Med 40(1):202–212

    Article  PubMed  Google Scholar 

  12. Giphart JE, Zirker CA, Myers CA, Pennington WW, LaPrade RF (2012) Accuracy of a contour-based biplane fluoroscopy technique for tracking knee joint kinematics of different speeds. J Biomech 45(16):2935–2938

    Article  PubMed  Google Scholar 

  13. Goyal K, Tashman S, Wang JH, Li K, Zhang X, Harner C (2012) In vivo analysis of the isolated posterior cruciate ligament-deficient knee during functional activities. Am J Sports Med 40(4):777–785

    Article  PubMed  Google Scholar 

  14. Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105(2):136–144

    Article  CAS  PubMed  Google Scholar 

  15. Kamath AF, Componovo R, Baldwin K, Israelite CL, Nelson CL (2009) Hip arthroscopy for labral tears: review of clinical outcomes with 4.8-year mean follow-up. Am J Sports Med 37(9):1721–1727

    Article  PubMed  Google Scholar 

  16. Kaptein BL, Valstar ER, Stoel BC, Rozing PM, Reiber JH (2003) A new model-based RSA method validated using CAD models and models from reversed engineering. J Biomech 36(6):873–882

    Article  CAS  PubMed  Google Scholar 

  17. Karlsson J, Eriksson BI, Renstrom PA (1997) Subtalar ankle instability. A review. Sports Med 24(5):337–346

    Article  CAS  PubMed  Google Scholar 

  18. Keefe DT, Haddad SL (2002) Subtalar instability. Etiology, diagnosis, and management. Foot Ankle Clin 7(3):577–609

    Article  PubMed  Google Scholar 

  19. Kozanek M, Rubash HE, Li G, de Asla RJ (2009) Effect of post-traumatic tibiotalar osteoarthritis on kinematics of the ankle joint complex. Foot Ankle Int 30(8):734–740

    Article  PubMed  Google Scholar 

  20. Leardini A, Benedetti MG, Berti L, Bettinelli D, Nativo R, Giannini S (2007) Rear-foot, mid-foot and fore-foot motion during the stance phase of gait. Gait Posture 25(3):453–462

    Article  CAS  PubMed  Google Scholar 

  21. Li G, Van de Velde SK, Bingham JT (2008) Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion. J Biomech 41(7):1616–1622

    Article  PubMed  Google Scholar 

  22. Lundgren P, Nester C, Liu A, Arndt A, Jones R, Stacoff A, Wolf P, Lundberg A (2008) Invasive in vivo measurement of rear-, mid- and forefoot motion during walking. Gait Posture 28(1):93–100

    Article  CAS  PubMed  Google Scholar 

  23. Maslen BA, Ackland TR (1994) Radiographic study of skin displacement errors in the foot and ankle during standing. Clin Biomech 9(5):291–296

    Article  CAS  Google Scholar 

  24. Moseley L, Smith R, Hunt A, Gant R (1996) Three-dimensional kinematics of the rearfoot during the stance phase of walking in normal young adult males. Clin Biomech (Bristol, Avon) 11(1):39–45

    Article  Google Scholar 

  25. Myers CA, Torry MR, Peterson DS, Shelburne KB, Giphart JE, Krong JP, Woo SL, Steadman JR (2011) Measurements of tibiofemoral kinematics during soft and stiff drop landings using biplane fluoroscopy. Am J Sports Med 39(8):1714–1722

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nester C, Jones RK, Liu A, Howard D, Lundberg A, Arndt A, Lundgren P, Stacoff A, Wolf P (2007) Foot kinematics during walking measured using bone and surface mounted markers. J Biomech 40(15):3412–3423

    Article  CAS  PubMed  Google Scholar 

  27. Nishinaka N, Tsutsui H, Mihara K, Suzuki K, Makiuchi D, Kon Y, Wright TW, Moser MW, Gamada K, Sugimoto H, Banks SA (2008) Determination of in vivo glenohumeral translation using fluoroscopy and shape-matching techniques. J Shoulder Elbow Surg 17(2):319–322

    Article  PubMed  Google Scholar 

  28. Reinschmidt C, van Den Bogert AJ, Murphy N, Lundberg A, Nigg BM (1997) Tibiocalcaneal motion during running, measured with external and bone markers. Clin Biomech (Bristol, Avon) 12(1):8–16

    Article  Google Scholar 

  29. Roberts S, Birch I, Otter S (2011) Comparison of ankle and subtalar joint complex range of motion during barefoot walking and walking in Masai Barefoot Technology sandals. J Foot Ankle Res 4:1

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ruff CB, Hayes WC (1983) Cross-sectional geometry of Pecos Pueblo femora and tibiae—a biomechanical investigation: I. Method and general patterns of variation. Am J Phys Anthropol 60(3):359–381

    Article  CAS  PubMed  Google Scholar 

  31. Stacoff A, Nigg BM, Reinschmidt C, van den Bogert AJ, Lundberg A (2000) Tibiocalcaneal kinematics of barefoot versus shod running. J Biomech 33(11):1387–1395

    Article  CAS  PubMed  Google Scholar 

  32. Tashman S, Collon D, Anderson K, Kolowich P, Anderst W (2004) Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med 32(4):975–983

    Article  PubMed  Google Scholar 

  33. Torry MR, Myers C, Shelburne KB, Peterson D, Giphart JE, Pennington WW, Krong JP, Woo SL, Steadman JR (2011) Relationship of knee shear force and extensor moment on knee translations in females performing drop landings: a biplane fluoroscopy study. Clin Biomech (Bristol, Avon) 26(10):1019–1024

    Article  Google Scholar 

  34. Torry MR, Shelburne KB, Peterson DS, Giphart JE, Krong JP, Myers C, Steadman JR, Woo SL (2011) Knee kinematic profiles during drop landings: a biplane fluoroscopy study. Med Sci Sports Exerc 43(3):533–541

    Article  PubMed  Google Scholar 

  35. Tranberg R, Karlsson D (1998) The relative skin movement of the foot: a 2-D roentgen photogrammetry study. Clin Biomech (Bristol, Avon) 13(1):71–76

    Article  Google Scholar 

  36. Van de Velde SK, Bingham JT, Gill TJ, Li G (2009) Analysis of tibiofemoral cartilage deformation in the posterior cruciate ligament-deficient knee. J Bone Joint Surg Am 91(1):167–175

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wainright WB, Spritzer CE, Lee JY, Easley ME, DeOrio JK, Nunley JA, DeFrate LE (2012) The effect of modified Brostrom–Gould repair for lateral ankle instability on in vivo tibiotalar kinematics. Am J Sports Med 40(9):2099–2104

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima DD, Cristofolini L, Witte H, Schmid O, Stokes I (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion-part I: ankle, hip, and spine. International Society of Biomechanics. J Biomech 35(4):543–548

    Article  PubMed  Google Scholar 

  39. Youberg LD, Cornwall MW, McPoil TG, Hannon PR (2005) The amount of rearfoot motion used during the stance phase of walking. J Am Podiatr Med Assoc 95(4):376–382

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Saucony, Inc. provided funding to complete this study but did not influence study design, collection, analysis, and interpretation of data. The authors thank RSAcore for providing the Model-based RSA analysis software. Casey Myers, Daniel S. Peterson, Michael R. Torry, J. Erik Giphart, Jacob P. Krong, and Wesley Pennington provided assistance in data collection, analysis and manuscript drafting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas O. Clanton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campbell, K.J., Wilson, K.J., LaPrade, R.F. et al. Normative rearfoot motion during barefoot and shod walking using biplane fluoroscopy. Knee Surg Sports Traumatol Arthrosc 24, 1402–1408 (2016). https://doi.org/10.1007/s00167-014-3084-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-014-3084-4

Keywords

Navigation