Skip to main content
Log in

Accuracy of magnetic resonance imaging, magnetic resonance arthrography and computed tomography for the detection of chondral lesions of the knee

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To assess the diagnostic test accuracy of magnetic resonance imaging (MRI), magnetic resonance arthrography (MRA) and computed tomography arthrography (CTA) for the detection of chondral lesions of the patellofemoral and tibiofemoral joints.

Methods

A review of published and unpublished literature sources was conducted on 22nd September 2011. All studies assessing the diagnostic test accuracy (sensitivity/specificity) of MRI or MRA or CTA for the assessment of adults with chondral (cartilage) lesions of the knee (tibiofemoral/patellofemoral joints) with surgical comparison (arthroscopic or open) as the reference test were included. Data were analysed through meta-analysis.

Results

Twenty-seven studies assessing 2,592 knees from 2,509 patients were included. The findings indicated that whilst presenting a high specificity (0.95–0.99), the sensitivity of MRA, MRI and CTA ranged from 0.70 to 0.80. MRA was superior to MRI and CTA for the detection of patellofemoral joint chondral lesions and that higher field-strength MRI scanner and grade four lesions were more accurately detected compared with lower field-strength and grade one lesions. There appeared no substantial difference in diagnostic accuracy between the interpretation from musculoskeletal and general radiologists when undertaking an MRI review of tibiofemoral and patellofemoral chondral lesions.

Conclusions

Specialist radiological imaging is specific for cartilage disease in the knee but has poorer sensitivity to determine the therapeutic options in this population. Due to this limitation, there remains little indication to replace the ‘gold-standard’ arthroscopic investigation with MRI, MRA or CTA for the assessment of adults with chondral lesions of the knee.

Level of evidence

II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adams ME, Li DK, McConkey JP, Davidson RG, Day B, Duncan CP et al (1991) Evaluation of cartilage lesions by magnetic resonance imaging at 0.15 T: comparison with anatomy and concordance with arthroscopy. J Rheumatol 18:1573–1580

    PubMed  CAS  Google Scholar 

  2. Bland M (2000) Introduction to medical statistics, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  3. Bredella MA, Tirman PF, Peterfy CG, Zarlingo M, Feller JF, Bost FW et al (1999) Accuracy of T2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients. AJR Am J Roentgenol 172:1073–1080

    PubMed  CAS  Google Scholar 

  4. Broderick LS, Turner DA, Renfrew DL, Schnitzer TJ, Huff JP, Harris C (1994) Severity of articular cartilage abnormality in patients with osteoarthritis: evaluation with fast spin-echo MR vs arthroscopy. AJR Am J Roentgenol 162:99–103

    PubMed  CAS  Google Scholar 

  5. Burstein D, Gray M (2003) New MRI techniques for imaging cartilage. J Bone Joint Surg 85-A(Suppl 2):70–77

    PubMed  Google Scholar 

  6. Cardello P, Gigli C, Ricci A, Chiatti L, Voglino N, Pofi E (2009) Retears of postoperative knee meniscus: findings on magnetic resonance imaging (MRI) and magnetic resonance arthrography (MRA) by using low and high field magnets. Skeletal Radiol 38:149–156

    Article  PubMed  Google Scholar 

  7. Crawford R, Walley G, Bridgman S, Maffulli N (2007) Magnetic resonance imaging versus arthroscopy in the diagnosis of knee pathology, concentrating on meniscal lesions and ACL tears: a systematic review. Br Med Bull 84:5–23

    Article  PubMed  Google Scholar 

  8. Crema MD, Roemer FW, Marra MD, Burstein D, Gold GE, Eckstein F et al (2011) Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 31:37–61

    Article  PubMed  Google Scholar 

  9. Disler DG, McCauley TR, Kelman CG, Fuchs MD, Ratner LM, Wirth CR et al (1996) Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy. AJR Am J Roentgenol 167:127–132

    PubMed  CAS  Google Scholar 

  10. Disler DG, McCauley TR, Wirth CR, Fuchs MD (1995) Detection of knee hyaline cartilage defects using fat-suppressed three-dimensional spoiled gradient-echo MR imaging: comparison with standard MR imaging and correlation with arthroscopy. AJR Am J Roentgenol 165:377–382

    PubMed  CAS  Google Scholar 

  11. Eckstein F, Charles HC, Buck RJ, Kraus VB, Remmers AE, Hudelmaier M et al (2005) Accuracy and precision of quantitative assessment of cartilage morphology by magnetic resonance imaging at 3.0 T. Arthritis Rheum 52:3132–3136

    Article  PubMed  Google Scholar 

  12. Figueroa D, Calvo R, Vaisman A, Carrasco MA, Moraga C, Delgado I (2007) Knee chondral lesions: incidence and correlation between arthroscopic and magnetic resonance findings. Arthroscopy 23:312–315

    Article  PubMed  Google Scholar 

  13. Flanigan DC, Harris JD, Trinh TQ, Siston RA, Brophy RH (2010) Prevalence of chondral defects in athletes’ knees: a systematic review. Med Sci Sports Exerc 42:1795–1801

    Article  PubMed  Google Scholar 

  14. Friemert B, Oberländer Y, Schwarz W, Häberle HJ, Bähren W, Gerngross H et al (2004) Diagnosis of chondral lesions of the knee joint: can MRI replace arthroscopy? A prospective study. Knee Surg Sports Traumatol Arthrosc 12:58–64

    Article  PubMed  CAS  Google Scholar 

  15. Gagliardi JA, Chung EM, Chandnani VP, Kesling KL, Christensen KP, Null RN et al (1994) Detection and staging of chondromalacia patellae: relative efficacies of conventional MR imaging, MR arthrography, and CT arthrography. AJR Am J Roentgenol 163:629–636

    PubMed  CAS  Google Scholar 

  16. Ghanem I, Abou Jaoude S, Kharrat K, Dagher F (2002) Is MRI effective in detecting intraarticular abnormalities of the injured knee? J Med Liban 50:168–174

    PubMed  Google Scholar 

  17. Giovagnoni A, Valeri G, Ercolani P, Paci E, Carloni S, Soccetti A (1995) Magnetic resonance arthrography in chondral disease of the knee. Radiol Med 90:219–225

    PubMed  CAS  Google Scholar 

  18. Gold GE, Bergman AC, Pauly JM, Lang P, Butts RK, Beaulieu CF et al (1998) Magnetic resonance imaging of knee cartilage repair. Top Magn Imaging 9:377–392

    CAS  Google Scholar 

  19. Gückel C, Jundt G, Schnabel K, Gächter A (1995) Spin-echo and 3D gradient-echo imaging of the knee joint: a clinical and histopathological comparison. Eur J Radiol 21:25–33

    Article  PubMed  Google Scholar 

  20. Gylys-Morin VM, Hajek PC, Sartoris DJ, Resnick D (1987) Articular cartilage defects: detectability in cadaver knees with MR. AJR Am J Roentgenol 45:1153–1157

    Google Scholar 

  21. Harman M, Ipeksoy U, Dogan A, Arslan H, Etlik O (2003) MR arthrography in chondromalacia patellae diagnosis on a low-field open magnet system. Clin Imaging 27:194–199

    Article  PubMed  Google Scholar 

  22. Heron CW, Calvert PT (1992) Three-dimensional gradient-echo MR imaging of the knee: comparison with arthroscopy in 100 patients. Radiology 183:839–844

    PubMed  CAS  Google Scholar 

  23. Hodler J, Resnick D (1992) Chondromalacia patellae. AJR Am J Roentgenol 158:106–107

    PubMed  CAS  Google Scholar 

  24. Hughes RJ, Houlihan-Burne DG (2011) Clinical and MRI considerations in sports-related knee joint cartilage injury and cartilage repair. Semin Musculoskelet Radiol 15:69–88

    Article  PubMed  Google Scholar 

  25. Kawahara Y, Uetani M, Nakahara N, Doiguchi Y, Nishiguchi M, Futagawa S, Kinoshita Y et al (1998) Fast spin-echo MR of the articular cartilage in the osteoarthritic knee. Correlation of MR and arthroscopic findings. Acta Radiol 39:120–125

    PubMed  CAS  Google Scholar 

  26. Kettunen JA, Visuri T, Harilainen A, Sandelin J, Kujala UM (2005) Primary cartilage lesions and outcome among subjects with patellofemoral pain syndrome. Knee Surg Sports Traumatol Arthrosc 13:131–134

    Article  PubMed  Google Scholar 

  27. Lee SH, Suh JS, Cho J, Kim SJ (2001) Evaluation of chondromalacia of the patella with axial inversion recovery-fast spin-echo imaging. J Magn Reson Imaging 13:412–416

    Article  PubMed  CAS  Google Scholar 

  28. Macarini L, Perrone A, Murrone M, Marini S, Stefanelli M (2004) Evaluation of patellar chondromalacia with MR: comparison between T2-weighted FSE SPIR and GE MTC. Radiol Med 108:159–171

    PubMed  Google Scholar 

  29. Magee T, Shapiro M, Williams D (2004) Usefulness of simultaneous acquisition of spatial harmonics technique for MRI of the knee. AJR Am J Roentgenol 182:1411–1415

    PubMed  Google Scholar 

  30. Murphy BJ (2001) Evaluation of grades 3 and 4 chondromalacia of the knee using T2* weighted 3D gradient echo articular cartilage images. Skeletal Radiol 30:305–311

    Article  PubMed  CAS  Google Scholar 

  31. Noyes FR, Stabler CL (1989) A system for grading articular cartilage lesions at arthroscopy. Am J Sports Med 17:505–513

    Article  PubMed  CAS  Google Scholar 

  32. Oei EH, Nikken JJ, Verstijnen AC, Ginai AZ, Hunink MGM (2003) MR imaging of the menisci and cruciate ligaments: a systematic review. Radiology 226:837–848

    Article  PubMed  Google Scholar 

  33. Outerbridge RE (1961) The etiology of chondromalacia patellae. J Bone Joint Surg 43-B:752–757

    CAS  Google Scholar 

  34. Perdikakis E, Karachalios T, Katonis P, Karantanas A (2011) Comparison of MR-arthrography and MDCT-arthrography for detection of labral and articular cartilage hip pathology. Skeletal Radiol 40:1441–1447

    Article  PubMed  Google Scholar 

  35. Pihlajamäki HK, Kuikka PI, Leppänen VV, Kiuru MJ, Mattila VM (2010) Reliability of clinical findings and magnetic resonance imaging for the diagnosis of chondromalacia patellae. J Bone Joint Surg 92-A:927–934

    Article  Google Scholar 

  36. Rand T, Brossmann J, Pedowitz R, Ahn JM, Haghigi P, Resnick D (2000) Analysis of patellar cartilage. Comparison of conventional MR imaging and MR and CT arthrography in cadavers. Acta Radiol 41:492–497

    PubMed  CAS  Google Scholar 

  37. Recht MP, Piraino DW, Paletta GA, Schils JP, Belhobek GH (1996) Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities. Radiology 198:209–212

    PubMed  CAS  Google Scholar 

  38. Recht M, Bobic V, Burstein D, Disler D, Gold G, Gray M (2001) Magnetic resonance imaging of articular cartilage. Clin Orthop Relat Res 391:S379–S396

    Article  PubMed  Google Scholar 

  39. Reiser M, Karpf PM, Bernett P (1982) Diagnosis of chondromalacia patellae using CT arthrography. Eur J Radiol 2:181–186

    PubMed  CAS  Google Scholar 

  40. Riel KA, Reinisch M, Kersting-Sommerhoff B, Hof N, Merl T (1999) 0.2-Tesla magnetic resonance imaging of internal lesions of the knee joint: a prospective arthroscopically controlled clinical study. Knee Surg Sports Traumatol Arthrosc 7:37–41

    Article  PubMed  CAS  Google Scholar 

  41. Rosas HG, De Smet AA (2009) Magnetic resonance imaging of the meniscus. Top Magn Reson Imaging 20:151–173

    Article  PubMed  Google Scholar 

  42. Russell GGQ, Johnson M, Johnston DWC, Arnett G, Swersky J (1994) Imaging studies in surgically proven chondromalacia patellae. Clin J Sport Med 4:11–13

    Article  Google Scholar 

  43. Shahriaree H (1985) Chondromalacia. Contemp Orthop 11:27–39

    Google Scholar 

  44. Spahn G, Wittig R, Kahl E, Klinger HM, Mückley T, Hofmann GO (2007) Evaluation of cartilage defects in the knee: validity of clinical, magnetic-resonance-imaging and radiological findings compared with arthroscopy. Unfallchirurg 110:414–424

    Article  PubMed  CAS  Google Scholar 

  45. Tyrrell RL, Gluckert K, Pathria M, Modic MT (1988) Fast three-dimensional MR imaging of the knee: comparison with arthroscopy. Radiology 166:865–872

    PubMed  CAS  Google Scholar 

  46. Vallotton JA, Meuli RA, Leyvraz PF, Landry M (1995) Comparison between magnetic resonance imaging and arthroscopy in the diagnosis of patellar cartilage lesions: a prospective study. Knee Surg Sports Traumatol Arthrosc 3:157–162

    Article  PubMed  CAS  Google Scholar 

  47. Vande Berg BC, Lecouvet FE, Poilvache P, Maldague B, Malghem J (2002) Spiral CT arthrography of the knee: technique and value in the assessment of internal derangement of the knee. Eur Radiol 12:1800–1810

    Article  PubMed  CAS  Google Scholar 

  48. von Engelhardt LV, Lahner M, Klussmann A, Bouillon B, Dàvid A, Haage P et al (2010) Arthroscopy vs. MRI for a detailed assessment of cartilage disease in osteoarthritis: diagnostic value of MRI in clinical practice. BMC Musculoskelet Disord 20:75

    Article  Google Scholar 

  49. von Engelhardt LV, Schmitz A, Burian B, Pennekamp PH, Schild HH, Kraft CN (2008) 3-Tesla MRI vs. arthroscopy for diagnostics of degenerative knee cartilage diseases: preliminary clinical results. Orthopade 37:914–922

    Article  Google Scholar 

  50. Whiting P, Rutjes AW, Dinnes J, Reitsma J, Bossuyt PM, Kleijnen J (2004) Development and validation of methods for assessing the quality of diagnostic accuracy studies. Health Technol Assess 8:1–234

    Google Scholar 

  51. Whiting PF, Weswood ME, Rutjes AW, Reitsma JB, Bossuyt PN, Kleijnen J (2006) Evaluation of QUADAS, a tool for the quality assessment of diagnostic accuracy studies. BMC Med Res Methodol 6:9

    Article  PubMed  Google Scholar 

  52. Yoshioka H, Stevens K, Hargreaves BA, Steines D, Genovese M, Dillingham MF et al (2004) Magnetic resonance imaging of articular cartilage of the knee: comparison between fat-suppressed three-dimensional SPGR imaging, fat-suppressed FSE imaging, and fat-suppressed three-dimensional DEFT imaging, and correlation with arthroscopy. J Magn Reson Imaging 20:857–864

    Article  PubMed  Google Scholar 

  53. Zaragoza E, Lattanzio PJ, Beaule PE (2009) Magnetic resonance imaging with gadolinium arthrography to assess acetabular cartilage delamination. Hip Int 19:18–23

    PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Information Services at the University of East Anglia, UK, for their assistance in gathering the papers required for this study.

Conflict of interest

No author declares a competing interest to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toby O. Smith.

Additional information

Registration: CRD42011001342.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, T.O., Drew, B.T., Toms, A.P. et al. Accuracy of magnetic resonance imaging, magnetic resonance arthrography and computed tomography for the detection of chondral lesions of the knee. Knee Surg Sports Traumatol Arthrosc 20, 2367–2379 (2012). https://doi.org/10.1007/s00167-012-1905-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-012-1905-x

Keywords

Navigation