Skip to main content
Log in

Is there a safe plateau pressure in ARDS? The right heart only knows

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

Airway pressure limitation is now a largely accepted strategy in adult respiratory distress syndrome (ARDS) patients; however, some debate persists about the exact level of plateau pressure which can be safely used. The objective of the present study was to examine if the echocardiographic evaluation of right ventricular function performed in ARDS may help to answer to this question.

Design and patients

For more than 20 years, we have regularly monitored right ventricular function by echocardiography in ARDS patients, during two different periods, a first (1980–1992) where airway pressure was not limited, and a second (1993–2006) where airway pressure was limited. By pooling our data, we can observe the effect of a large range of plateau pressure upon mortality rate and incidence of acute cor pulmonale.

Results

In this whole group of 352 ARDS patients, mortality rate and incidence of cor pulmonale were 80 and 56%, respectively, when plateau pressure was > 35 cmH2O; 42 and 32%, respectively, when plateau pressure was between 27 and 35 cmH2O; and 30 and 13%, respectively, when plateau pressure was < 27 cmH2O. Moreover, a clear interaction between plateau pressure and cor pulmonale was evidenced: whereas the odd ratio of dying for an increase in plateau pressure from 18–26 to 27–35 cm H2O in patients without cor pulmonale was 1.05 (p = 0.635), it was 3.32 in patients with cor pulmonale (p < 0.034).

Conclusion

We hypothesize that monitoring of right ventricular function by echocardiography at bedside might help to control the safety of plateau pressure used in ARDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28:596–608

    PubMed  CAS  Google Scholar 

  2. Webb H, Tierney D (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressure. Protection by positive end-expiratory pressure. Am Rev Respir D 110:556–565

    CAS  Google Scholar 

  3. Dreyfuss D, Basset G, Soler P, Saumon G (1985) Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir D 132:880–884

    CAS  Google Scholar 

  4. Hickling K, Henderson S, Jackson R (1990) Low mortality associated with low volume/pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med 16:372–377

    Article  PubMed  CAS  Google Scholar 

  5. Whittenberger J, McGregor M, Berglund E, Borst H (1960) Influence of state of inflation of the lung on pulmonary vascular resistance. J Appl Physiol 15:878–882

    PubMed  CAS  Google Scholar 

  6. Morgan B, Martin W, Hornbein T, Crowford E, Guntheroth W (1966) Hemodynamic effects of intermittent positive pressure respiration. Anesthesiology 27:584–590

    Article  PubMed  CAS  Google Scholar 

  7. Howell J, Permutt S, Proctor D, Riley R (1961) Effect of inflation of the lung on different parts of the pulmonary vascular bed. J Appl Physiol 16:71–76

    PubMed  CAS  Google Scholar 

  8. Zapol W, Snider M (1977) Pulmonary hypertension in severe acute respiratory failure. N Engl J Med 296:476–480

    Article  PubMed  CAS  Google Scholar 

  9. Jardin F, Gurdjian F, Fouilladieu JL, Goudot B, Margairaz A (1979) Pulmonary and systemic hemodynamic disorders in adult respiratory distress syndrome. Intensive Care Med 5:127–133

    Article  PubMed  CAS  Google Scholar 

  10. Jardin F, Gueret P, Dubourg O, Farcot JC, Margairaz A, Bourdarias JP (1985) Two-dimensional echocardiographic evaluation of right ventricular size and contractility in acute respiratory failure. Crit Care Med 13:952–956

    Article  PubMed  CAS  Google Scholar 

  11. Jardin F, Dubourg O, Bourdarias JP (1997) Echocardiographic pattern of acute cor pulmonale. Chest 111:209–217

    PubMed  CAS  Google Scholar 

  12. Squara P, Dhainaut JF, Artigas A, Carlet J and the European Collaborative ARDS Working Group (1998) Hemodynamic profile in severe ARDS: results of the European Collaborative ARDS Study. Intensive Care Med 24:1018–1028

    Article  PubMed  CAS  Google Scholar 

  13. Monchi M, Bellenfant F, Cariou A, Joly JM, Thebert D, Laurent I, Dhainaut JF, Brunet F (1998) Early predictive factors of survival in the acute respiratory distress syndrome. A multivariate analysis. Am J Respir Crit Care Med 158:1076–1081

    PubMed  CAS  Google Scholar 

  14. Slutsky A (1993) Mechanical ventilation. American College of Chest Physicians' Consensus Conference. Chest 104:1833–1859

    PubMed  CAS  Google Scholar 

  15. Esteban A, Anzueto A, Frutos F, Alia I, Brochard L, Stewart T, Benito S, Epstein S, Apezteguia C, Nightingale P, Arroliga A, Tobin M (2002) Characteristics and outcomes in adult patients receiving mechanical ventilation. A 28-Day International study. J Am Med Assoc 287:345–355

    Article  Google Scholar 

  16. Hager D, Krishnan J, Hayden D, Bower R (2005) Tidal volume reduction in patients with acute lung injury when plateau pressure are not high. Am J Respir Crit Care Med 172:1241–1245

    Article  PubMed  Google Scholar 

  17. Ferguson N, Frutos-Vivar F, Esteban A, Anzueto A, Alia I, Bower G, Stewart T, Apezteguia C, Gonzales M, Soto L, Abroug F, Brochard L (2005) Airway pressure, tidal volume, and mortality in patients with acute respiratory distress syndrome. Crit Care Med 33:21–30

    Article  PubMed  Google Scholar 

  18. Eichacker P, Gerstenberger E, Banks S, Xizhong C, Natanson S (2002) Meta-analysis of acute lung injury and acute respiratory distress syndrome trials testing low tidal volumes. Am J Respir Crit Med 166:1510–1514

    Article  Google Scholar 

  19. Page B, Vieillard-Baron A, Beauchet A, Aegerter P, Prin S, Jardin F (2003) Low stretch ventilation strategy in acute respiratory distress syndrome: eight years of clinical experience in a single center. Crit Care Med 31:765–769

    Article  PubMed  Google Scholar 

  20. Vieillard-Baron A, Schmitt JM, Beauchet A, Augarde R, Prin S, Page B, Jardin F (2001) Acute cor pulmonale in acute respiratory distress syndrome submitted to protective ventilation: incidence, clinical implications and prognosis. Crit Care Med 29:1551–1555

    Article  PubMed  CAS  Google Scholar 

  21. The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  22. Deans K, Minneci P, Cui X, Banks S, Natanson C, Eichaker P (2005) Mechanical ventilation in ARDS: one size does not fit all. Crit Care Med 33:1141–1144

    Article  PubMed  Google Scholar 

  23. Gattinoni L, Pesanti A (2005) The concept of “baby lung”. Intensive Care Med 31:776–784

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge E. Girou for performing the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Jardin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jardin, F., Vieillard-Baron, A. Is there a safe plateau pressure in ARDS? The right heart only knows. Intensive Care Med 33, 444–447 (2007). https://doi.org/10.1007/s00134-007-0552-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-007-0552-z

Keywords

Navigation