Skip to main content
Log in

Monitoring dead space during recruitment and PEEP titration in an experimental model

  • Experimental
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

To test the usefulness of dead space for determining open-lung PEEP, the lowest PEEP that prevents lung collapse after a lung recruitment maneuver.

Design

Prospective animal study.

Setting

Department of Clinical Physiology, University of Uppsala, Sweden.

Subjects

Eight lung-lavaged pigs.

Interventions

Animals were ventilated using constant flow mode with VT of 6 ml/kg, respiratory rate of 30 bpm, inspiratory-to-expiratory ratio of 1 : 2, and FiO2 of 1. Baseline measurements were performed at 6 cmH2O of PEEP. PEEP was increased in steps of 6 cmH2O from 6 to 24 cmH2O. Recruitment maneuver was achieved within 2 min at pressure levels of 60/30 cmH2O for Peak/PEEP. PEEP was decreased from 24 to 6 cmH2O in steps of 2 cmH2O and then to 0 cmH2O. Each PEEP step was maintained for 10 min.

Measurements and results

Alveolar dead space (VDalv), the ratio of alveolar dead space to alveolar tidal volume (VDalv/VTalv), and the arterial to end-tidal PCO2 difference (Pa-etCO2) showed a good correlation with PaO2, normally aerated areas, and non-aerated CT areas in all animals (minimum–maximum r2 = 0.83–0.99; p < 0.01). Lung collapse (non-aerated tissue > 5%) started at 12 cmH2O PEEP; hence, open-lung PEEP was established at 14 cmH2O. The receiver operating characteristics curve demonstrated a high specificity and sensitivity of VDalv (0.89 and 0.90), VDalv/VTalv (0.82 and 1.00), and Pa − etCO2 (0.93 and 0.95) for detecting lung collapse.

Conclusions

Monitoring of dead space was useful for detecting lung collapse and for establishing open-lung PEEP after a recruitment maneuver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gattinoni L, Pelosi A, Crott S, Valenza F (1995) Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 151:1807–1814

    PubMed  CAS  Google Scholar 

  2. Puybasset L, Cluzel P, Chao N, Slutsky AS, Coriat P, Rouby JJ (1998) A computed tomography scans assessment of regional lung volume in acute lung injury. Am J Respir Crit Care Med 158:1644–1655

    PubMed  CAS  Google Scholar 

  3. The Acute Respiratory Distress Syndrome Network (2004) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  4. Reber A, Endberg G, Wegenius G, Hedenstierna G (1996) Lung aeration: the effect of pre-oxygenation and hyperoxygenation during total intravenous anesthesia. Anesthesia 51:733–777

    CAS  Google Scholar 

  5. Reissmann H, Böhm SH, Suarez-Sipmann F, Tusman G, Buschmann C, Maisch S, Pesch T, Tham O, Plumers C, Schulte am Esch J, Hedenstierna G (2005) Suctioning through a double-lumen endotracheal tube helps to prevent alveolar collapse and to preserve ventilation. Intensive Care Med 31:431–440

    Article  PubMed  Google Scholar 

  6. Muscedere JG, Mullen JBM, Gan K, Bryan AC, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149:1327–1334

    PubMed  CAS  Google Scholar 

  7. Abraham E, Andrews P, Antonelli M, Brochard L, Brun-Buisson C, Dobb G, Fagon J-Y, Groeneveld J, Mancebo J, Metnitz P, Nava S, Pinsky M, Radermacher P, Ranieri M, Richard C, Tasker R, Vallet B (2004) Year in review in Intensive Care Medicine, 2003. I. Respiratory failure, infection and sepsis. Intensive Care Med 30:1017–1031

    Article  PubMed  Google Scholar 

  8. Andrews P, Azoulay E, Antonelli M, Brochard L, Brun-Buisson C, de Backer D, Dobb G, Fagon J-Y, Gerlach H, Groeneveld J, Mancebo J, Metnitz P, Nava S, Pugin J, Pinsky M, Radermacher P, Richard C, Tasker R (2006) Year in review in Intensive Care Medicine, 2005. I. Acute respiratory failure and acute lung injury, ventilation, hemodynamics, education, renal failure. Intensive Care Med 32:207–216

    Article  PubMed  Google Scholar 

  9. Lachmann B (1992) Open up the lung and keep the lung open. Intensive Care Med 118:319–321

    Article  Google Scholar 

  10. Rothen HU, Sporre B, Wegenius G, Hedenstierna G (1993) Reexpansion of atelectasis during general anaesthesia: a computed tomography study. Br J Anaesth 71:788–795

    PubMed  CAS  Google Scholar 

  11. Amato MBP, Barbas CSV, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354

    Google Scholar 

  12. Tusman G, Böhm SH, Vazquez de Anda GF, do Campo JL, Lachmann B (1999) “Alveolar Recruitment Strategy” improved arterial oxygenation during general anaesthesia. Br J Anaesth 82:8–13

    Google Scholar 

  13. Richard JC, Maggiore SM, Mercat A (2004) Clinical review: bedside assessment of alveolar recruitment. Crit Care Med 8:163–169

    Google Scholar 

  14. Malbouisson LM, Muller JC, Constantin JM, Lu Q, Puybasset L, Rouby JJ (2001) Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 163:1444–1450

    PubMed  CAS  Google Scholar 

  15. Hickling KG (2001) Best compliance during a decremental, but not incremental, positive end-expiratory pressure trial is related to open-lung positive end-expiratory pressure. A mathematical model of acute respiratory distress syndrome lungs. Am J Respir Crit Care Med 163:69–78

    PubMed  CAS  Google Scholar 

  16. Rouby JJ, Lu Q, Goldstein I (2002) Selecting the right level of positive end-expiratory pressure in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 165:1186–1186

    Google Scholar 

  17. Ranieri M, Zhang H, Mascia L, Aubin M, Lin C, Mullen B, Grasso S, Binnie M, Volgyesi GA, Slutsky AS (2000) Pressure-time curve predicts minimally injurious ventilatory strategy in an isolated rat lung model. Anesthesiology 93:1320–1328

    Article  PubMed  CAS  Google Scholar 

  18. Sipmann FS, Böhm SH, Tusman G, Reissmann H, Pesch T, Thamm O, Hedenstierna G (2004) Selecting Open Lung PEEP in an experimental model of ARDS: comparison of oxygenation and compliance with CT scan. Am J Resp Crit Care Med 169:A721

    Google Scholar 

  19. Enghoff H (1938) Volume inefficax. Bemerkungen zur Frage des schädlichen Raumes. Upsala Läkaref Förh 44:191–218

  20. Fowler WS (1948) Lung function studies. II. The respiratory dead space. Am J Physiol 154:405–416

    PubMed  CAS  Google Scholar 

  21. Fletcher R, Jonson B (1981) The concept of deadspace with special reference to the single breath test for carbon dioxide. Br J Anaesth 53:77–88

    PubMed  CAS  Google Scholar 

  22. Breen PH, Mazumdar B (1996) How does positive end-expiratory pressure decrease CO2 elimination from the lung? Respir Physiol 103:233–242

    Article  PubMed  CAS  Google Scholar 

  23. Tusman G, Böhm SH, Suárez Sipmann F, Turchetto E (2004) Alveolar recruitment improves ventilatory efficiency of the lungs during anesthesia. Can J Anesth 51:723–727

    Article  PubMed  Google Scholar 

  24. Tusman G, Böhm SH, Suárez Sipmann F, Maisch S (2004) Lung recruitment improves the efficiency of ventilation and gas exchange during one-lung ventilation anesthesia. Anesth Analg 98:1604–1609

  25. Suter PM, Fairley B, Isenberg MD (1975) Optimum end-expiratory pressure in patients with acute pulmonary failure. N Engl J Med 292:284–289

    Article  PubMed  CAS  Google Scholar 

  26. McMahon SM, Halprin GM, Sieker HO (1973) Positive end-expiratory airway pressure in severe arterial hypoxemia. Am Rev Respir Dis 108:526–535

    PubMed  CAS  Google Scholar 

  27. Blanch LL, Lucangelo U, Lopez-Aguilar J, Fernandez R, Romero PV (1999) Volumetric capnography in patients with acute lung injury: effect of positive end-expiratory pressure. Eur Respir J 13:1048–1054

    Article  PubMed  CAS  Google Scholar 

  28. Beydon L, Uttman L, Rawal R, Jonson B (2002) Effects of positive end-expiratory pressure on dead space and its partitions in acute lung injury. Intensive Care Med 28:1239–1245

    Article  PubMed  CAS  Google Scholar 

  29. Berggren SM (1942) The oxygen deficit of arterial blood caused by non-ventilated parts of the lung. Acta Physiol Scand (Suppl 4):4–92

  30. Breen PH, Mazumdar B, Skinner SC (1996) Comparison of end-tidal PCO2 and average alveolar expired PCO2 during positive end-expiratory pressure. Anesth Analg 82:368–373

    Article  PubMed  CAS  Google Scholar 

  31. Gattinoni L, Caironi P, Pelosi P, Goodman LR (2001) What has computed tomography taught us about the acute respiratory distress syndrome. Am J Respir Crit Care Med 164:1701–1711

    PubMed  CAS  Google Scholar 

  32. Lachmann B, Jonson B, Lindroth M, Robertson B (1982) Modes of artificial ventilation in severe respiratory distress syndrome. Lung function and morphology in rabbits after wash-out of alveolar surfactant. Crit Care Med 10:724–732

    PubMed  CAS  Google Scholar 

  33. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R (1994) The American-European Consensus Conference on ARDS: definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824

    PubMed  CAS  Google Scholar 

  34. Gattinoni L, Vagginelli F, Carlesso E, Taccone P, Conte V, Chiumello D, Valenza F, Caironi P, Pesenti A (2003) Decrease in PaCO2 with prone position is predictive of improved outcome in acute distress syndrome. Crit Care Med 31:2727–2733

    Article  PubMed  Google Scholar 

  35. Hedenstierna G, Lundberg S (1975) Airway compliance during artificial ventilation. Br J Anaesth 47:1227–1232

    Google Scholar 

  36. Wenzel U, Rüdiger M, Wagner MH, Wauer RR (1999) Utility of deadspace and capnometry measurements in determination of surfactant efficacy in surfactant-depleted lungs. Crit Care Med 27:946–952

    Article  PubMed  CAS  Google Scholar 

  37. Van der Kloot TE, Blanch L, Youngblood AM, Weinert C, Adams AB, Marini JJ, Shapiro RS, Nahum A (2000) Recruitment maneuvers in three experimental models of acute lung injury: Effects on lung volume and gas exchange. Am J Respir Crit Care Med 161:1485–1494

    PubMed  CAS  Google Scholar 

  38. Rosenthal C, Caronia C, Quinn C, Lugo N, Sagy M (1998) A comparison among animal models of acute lung injury. Crit Care Med 26:912–916

    Article  PubMed  CAS  Google Scholar 

  39. Vieira SRR, Puybasset L, Richecoeur J, Lu Q, Cluzel P, Gusman PB, Coriat P, Rouby JJ (1998) A lung computed tomographic assessment of positive end-expiratory pressure-induced lung overdistension. Am J Respir Crit Care Med 158:1571–1577

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Roneus, E.-M. Hedin, K. Fagerbrink (laboratory assistants at the Department of Medical Sciences, Clinical Physiology, University Hospital, Uppsala Sweden), and O. Thamm (medical student at Department of Anesthesiology, University Hospital, Hamburg-Eppendorf, Hamburg, Germany) for their invaluable assistance, and I. Passoni (Department of Bioengineering, University of Mar del Plata, Argentina) for her expert help with data analysis. This work was performed in the Department of Medical Sciences, Clinical Physiology, University Hospital, Uppsala Sweden. Support was provided by the Swedish Medical Research Council (5315), the Swedish Heart-Lung Fund and Maquet Critical Care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Tusman.

Additional information

This article is discussed in the editorial available at: http://dx.doi.org/10.1007/s00134-006-0372-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tusman, G., Suarez-Sipmann, F., Böhm, S.H. et al. Monitoring dead space during recruitment and PEEP titration in an experimental model. Intensive Care Med 32, 1863–1871 (2006). https://doi.org/10.1007/s00134-006-0371-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-006-0371-7

Keywords

Navigation