Skip to main content

Advertisement

Log in

Anticoagulation strategies in continuous renal replacement therapy: can the choice be evidence based?

  • Review
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objectives

Critical illness increases the tendency to both coagulation and bleeding, complicating anticoagulation for continuous renal replacement therapy (CRRT). We analyzed strategies for anticoagulation in CRRT concerning implementation, efficacy and safety to provide evidence-based recommendations for clinical practice.

Methods

We carried out a systematic review of the literature published before June 2005. Studies were rated at five levels to create recommendation grades from A to E, A being the highest. Grades are labeled with minus if the study design was limited by size or comparability of groups. Data extracted were those on implementation, efficacy (circuit survival), safety (bleeding) and monitoring of anticoagulation.

Results

Due to the quality of the studies recommendation grades are low. If bleeding risk is not increased, unfractionated heparin (activated partial thromboplastin time, APTT, 1–1.4 times normal) or low molecular weight heparin (anti-Xa 0.25–0.35 IU/l) are recommended (grade E). If facilities are adequate, regional anticoagulation with citrate may be preferred (grade C). If bleeding risk is increased, anticoagulation with citrate is recommended (grade D). CRRT without anticoagulation can be considered when coagulopathy is present (grade D). If clotting tendency is increased predilution or the addition of prostaglandins to heparin may be helpful (grade C).

Conclusion

Anticoagulation for CRRT must be tailored to patient characteristics and local facilities. The implementation of regional anticoagulation with citrate is worthwhile to reduce bleeding risk. Future trials should be randomized and should have sufficient power and well defined endpoints to compensate for the complexity of critical illness-related pro- and anticoagulant forces. An international consensus to define clinical endpoints is advocated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van de Wetering J, Westendorp RGJ, Van der Hoeven JG, Stolk B, Feuth JDM, Chang PC (1996) Heparin use in continuous renal replacement procedure: the struggle between filter coagulation and patient hemorrhage. J Am Soc Nephrol 7:145–150

    PubMed  Google Scholar 

  2. Davenport A (1997) The coagulation system in the critically ill patient with acute renal failure and the effect of an extracorporeal circuit. Am J Kidney Dis 30:20–27

    Google Scholar 

  3. Stefanidis I, Frank D, Maurin N (1998) Hemostasis activation markers in acute renal failure. Ren Fail 20:147–155

    PubMed  CAS  Google Scholar 

  4. Cardigan RA, McGloin H, Mackie IJ, Machin SJ, Singer M (1999) Activation of the tissue factor pathway occurs during continuous venovenous hemofiltration. Kidney Int 55:1568–1574

    Article  PubMed  CAS  Google Scholar 

  5. Colucci M, Balconi G, Lorenzet R, Pietra A, Locati D, Donati MB, Semeraro N (1983) Cultured human endothelial cells generate tissue factor in response to endotoxin. J Clin Invest 71:1893–1896

    PubMed  CAS  Google Scholar 

  6. Kappelmayer J, Bernabei A, Edmunds LH Jr, Edgington TS, Colman RW (1993) Tissue factor is expressed on monocytes during simulated extracorporeal circulation. Circ Res 72:1075–1081

    PubMed  CAS  Google Scholar 

  7. Bastien O, French P, Paulus S, Filley S, Berruyer M, Dechavanne M, Estanove S (1995) Antithrombin III deficiency during continuous venovenous hemodialysis. Contrib Nephrol 116:154–158

    PubMed  CAS  Google Scholar 

  8. Salmon J, Cardigan R, Mackie I, Cohen SL, Machin S, Singer M (1997) Continuous venovenous haemofiltration using polyacrylonitrile filters does not activate contact system and intrinsic coagulation pathways. Intensive Care Med 23:38–43

    PubMed  CAS  Google Scholar 

  9. Joannes-Boyau O, Lafargue M, Honore PM, Gaucher B, Fleureau C, Janvier G (2005) Short filter lifespan during hemofiltration in sepsis: antithrombine (AT) supplementation should be a good way to sort out this problem (abstract). Blood Purif 23:169

    Google Scholar 

  10. Boldt J, Menges T, Wollbruck M, Sonneborn S, Hempelmann G (1994) Continuous hemofiltration and platelet function in critically ill patients. Crit Care Med 22:1155–6011

    Article  PubMed  CAS  Google Scholar 

  11. Holt AW, Bierer P, Bersten AD, Bury LK, Vedig AE (1996) Continuous renal replacement therapy in critically ill patients: monitoring circuit function. Anaesth Intensive Care 24:423–429

    PubMed  CAS  Google Scholar 

  12. Martin PY, Chevrolet JC, Suter P, Favre H (1994) Anticoagulation in patients treated by continuous venovenous hemofiltration: a retrospective study. Am J Kidney Dis 24:806–812

    PubMed  CAS  Google Scholar 

  13. Pont AC de, Oudemans-van Straaten HM, Roozendaal KJ, Zandstra DF (2000) Nadroparin versus dalteparin anticoagulation in high-volume, continuous venovenous hemofiltration: a double-blind, randomized, crossover study. Crit Care Med 28:421–425

    PubMed  Google Scholar 

  14. Cutts MW, Thomas AN, Kishen R (2000) Transfusion requirements during continuous veno-venous haemofiltration: the importance of filter life. Intensive Care Med 26:1694–1697

    PubMed  CAS  Google Scholar 

  15. Uchino S, Fealy N, Baldwin I, Morimatsu H, Bellomo R (2003) Pre-dilution vs. post-dilution during continuous veno-venous hemofiltration: impact on filter life and azotemic control. Nephron Clin Pract 94:94–98

    Article  Google Scholar 

  16. Morabito S, Guzzo I, Solazzo A, Muzi L, Luciani R, Pierucci A (2003) Continuous renal replacement therapies: anticoagulation in the critically ill at high risk of bleeding. J Nephrol 16:566–571

    PubMed  Google Scholar 

  17. Stefanidis I, Hagel J, Frank D, Maurin N (1996) Hemostatic alterations during continuous venovenous hemofiltration in acute renal failure. Clin Nephrol 46:199–205

    PubMed  CAS  Google Scholar 

  18. Ramesh Prasad GV, Palevsky PM, Burr R, Lesko JM, Gupta B, Greenberg A (2000) Factors affecting system clotting in continuous renal replacement therapy: results of a randomized, controlled trial. Clin Nephrol 53:55–60

    Google Scholar 

  19. Baldwin I, Bellomo R, Koch B (2004) Blood flow reductions during continuous renal replacement therapy and circuit life. Intensive Care Med 30:2074–2079

    PubMed  Google Scholar 

  20. Webb AR, Mythen MG, Jacobson D, Mackie IJ (1995) Maintaining blood flow in the extracorporeal circuit: haemostasis and anticoagulation. Intensive Care Med 21:84–93

    PubMed  CAS  Google Scholar 

  21. Favre H, Martin Y, Spoermann C (1996) Anticoagulation in continuous extracorporeal renal replacement therapy. Semin Dialysis 9:112–118

    Google Scholar 

  22. Schetz M (2001) Anticoagulation in continuous renal replacement therapy. Contrib Nephrol 132:283–303

    PubMed  CAS  Google Scholar 

  23. Davenport A, Mehta S (2002) The Acute Dialysis Quality Initiative. VI. Access and anticoagulation in CRRT. Adv Ren Replace Ther 9:273–281

    Article  PubMed  Google Scholar 

  24. Dellinger RP, Carlet JM, Masur H, Gerlach H (2004) Introduction to the Surviving Sepsis Campaign Guidelines. Crit Care Med 32:446–447

    Google Scholar 

  25. Mehta RL (1996) Anticoagulation strategies for continuous renal replacement therapies: what works? Am J Kidney Dis 28:8–14

    Google Scholar 

  26. Ronco C, Bellomo R, Homel P, Brendolan A, Dan M, Piccinni P, La Greca G (2000) Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet 356:26–30

    PubMed  CAS  Google Scholar 

  27. Bouman CS, Oudemans-Van Straaten HM, Tijssen JG, Zandstra DF, Kesecioglu J (2002) Effects of early high-volume continuous venovenous hemofiltration on survival and recovery of renal function in intensive care patients with acute renal failure: a prospective, randomized trial. Crit Care Med 30:2205–2211

    PubMed  Google Scholar 

  28. Hoppensteadt DA, Walenga JM, Fasanella A, Jeske W, Fareed J (1995) TFPI antigen levels in normal human volunteers after intravenous and subcutaneous administration of unfractionated heparin and a low molecular weight heparin. Thromb Res 77:175–185

    Article  PubMed  CAS  Google Scholar 

  29. Hirsh J, Warkentin TE, Shaughnessy SG, Anand SS, Halperin JL, Raschke R, Granger C, Ohman EM, Dalen JE (2001) Heparin and low-molecular-weight heparin: mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Chest 119:64-94

    Article  Google Scholar 

  30. Greaves M (2002) Control of Anticoagulation Subcommittee of the Scientific and Standardization Committee of the International Society of Thrombosis and Haemostasis. Limitations of the laboratory monitoring of heparin therapy. Scientific and Standardization Committee Communications: on behalf of the Control of Anticoagulation Subcommittee of the Scientific and Standardization Committee of the International Society of Thrombosis and Haemostasis. Thromb Haemost 87:163–164

    PubMed  CAS  Google Scholar 

  31. Baker BA, Adelman MD, Smith PA, Osborn JC (1997) Inability of the activated partial thromboplastin time to predict heparin levels. Time to reassess guidelines for heparin assays. Arch Intern Med 157:2475–2479

    PubMed  CAS  Google Scholar 

  32. De Waele JJ, Van Cauwenberghe S, Hoste E, Benoit D, Colardyn F (2003) The use of the activated clotting time for monitoring heparin therapy in critically ill patients. Intensive Care Med 29:325–328

    PubMed  Google Scholar 

  33. Bellomo R, Teede H, Boyce N (1993) Anticoagulant regimens in acute continuous hemodiafiltration: a comparative study. Intensive Care Med 19:329–332

    PubMed  CAS  Google Scholar 

  34. Leslie GD, Jacobs IG, Clarke GM (1996) Proximally delivered dilute heparin does not improve circuit life in continuous venovenous haemodiafiltration. Intensive Care Med 22:1261–1264

    PubMed  CAS  Google Scholar 

  35. Tan HK, Baldwin I, Bellomo (2000) Continuous veno-venous hemofiltration without anticoagulation in high-risk patients. Intensive Care Med 26:1652–1657

    PubMed  CAS  Google Scholar 

  36. Stefanidis I, Hagel J, Maurin N (1995) Influence of coagulation parameters on filter running time during continuous venovenous hemofiltration. Contrib Nephrol 116:145–149

    PubMed  CAS  Google Scholar 

  37. Frydman A (1996) Low-molecular-weight heparins: an overview of their pharmacodynamics, pharmacokinetics and metabolism in humans. Haemostasis 26 [Suppl 2]:24–38

  38. Singer M, McNally T, Screaton G, Mackie I, Machin S, Cohen SL (1994) Heparin clearance during continuous veno-venous haemofiltration. Intensive Care Med 20:212–215

    PubMed  CAS  Google Scholar 

  39. Reeves JH, Cumming AR, Gallagher L, O'Brien JL, Santamaria JD (1999) A controlled trial of low-molecular-weight heparin (dalteparin) versus unfractionated heparin as anticoagulant during continuous venovenous hemodialysis with filtration. Crit Care Med 27:2224–2228

    Article  PubMed  CAS  Google Scholar 

  40. Joannidis M, Kountchew J, Grote A, Bellmann R, Mayr A, Wiedermann C (2004) Unfractionated versus low-molecular-weight heparin (enoxaparin) for anticoagulation in CVVH (abstract). Intensive Care Med 30:S155

    Article  Google Scholar 

  41. Journois D, Safran D, Castelain MH, Chanu D, Drevillon C, Barrier G (1990) Comparison of the antithrombotic effects of heparin, enoxaparin and prostacycline in continuous hemofiltration. Ann Fr Anesth Reanim 9:331–337

    Article  PubMed  CAS  Google Scholar 

  42. Oudemans-van Straaten HM, Bosman RJ, van der Spoel JI, Zandstra DF (1999) Outcome of critically ill patients treated with intermittent high-volume haemofiltration: a prospective cohort analysis. Intensive Care Med 25:814–821

    Google Scholar 

  43. Reeves JH, Graan M (2003) Randomised controlled trial enoxaparin versus heparin in continuous renal replacement therapy (abstract). Blood Purif 21:207

    Google Scholar 

  44. Van Doorn KJ, Hubloue I, Verbeelen D (2004) Urea exchange efficacy during unfractionated heparin anticoagulation versus low molecular weight heparin (dalteparin) anticoagulation in continuous venovenous hemofiltration (abstract). Blood Purif 22:243–244

    Google Scholar 

  45. Knight DW, Selwyn D, Girling K (2003) Low-molecular-weight heparin for anticoagulation during continuous venovenous hemofiltration. Arch Intern Med 163:981

    PubMed  Google Scholar 

  46. Farooq V, Hegarty J, Chandrasekar T, Lamerton EH, Mitra S, Houghton JB, Kalra PA, Waldek S, O'Donoghue DJ, Wood GN (2004) Serious adverse incidents with the usage of low molecular weight heparins in patients with chronic kidney disease. Am J Kidney Dis 43:531–537

    Article  PubMed  Google Scholar 

  47. Nagge J, Crowther M, Hirsh J (2002) Is impaired renal function a contraindication to the use of low-molecular-weight heparin? Arch Intern Med 162:2605–2609

    PubMed  Google Scholar 

  48. Meuleman DG, Hobbelen PMJ, van Dedem G, Moelker HCT (1982) A novel anti-thrombotic heparinoid (Org 10172) devoid of bleeding inducing capacity: a survey of its pharmacological properties in experimental animal models. Thromb Res 27:353–363

    PubMed  CAS  Google Scholar 

  49. Magnani HN (1993) Heparin-induced thrombocytopenia (HIT): an overview of 230 patients treated with Orgaran (Org 10172). Thromb Haemost 70:554–561

    PubMed  CAS  Google Scholar 

  50. Polkinghorne KR, McMahon LP, Becker GJ (2002) Pharmacokinetic studies of dalteparin (Fragmin), enoxaparin (Clexane), and danaparoid sodium (Orgaran) in stable chronic hemodialysis patients. Am J Kidney Dis 40:990–995

    PubMed  CAS  Google Scholar 

  51. Lindhoff-Last E, Betz C, Bauersachs R (2001) Use of a low-molecular-weight heparinoid (danaparoid sodium) for continuous renal replacement therapy in intensive care patients. Clin Appl Thromb Hemost 7:300–304

    PubMed  CAS  Google Scholar 

  52. Wester JPJ (2004) Guidelines for anticoagulation with danaparoid sodium and lepirudin in continuous venovenous hemofiltration. Neth J Crit Care 8:293–301

    Google Scholar 

  53. Warkentin TE, Greinacher A (2005) Heparin-induced thrombocytopenia: recognition, treatment, and prevention: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest 126:311–337

    Article  Google Scholar 

  54. Warkentin TE, Cook RJ, Marder VJ, Sheppard JA, Moore JC, Eriksson BI, Greinacher A, Kelton JG (2005) Anti-platelet factor 4/heparin antibodies in orthopedic surgery patients receiving antithrombotic prophylaxis with fondaparinux or enoxaparin. Blood 106:3791–3796

    Article  PubMed  CAS  Google Scholar 

  55. Martel N, Lee J, Wells PS (2005) Risk of heparin induced thrombocytopenia with unfractionated and low molecular weight heparin thromboprophylaxis: a meta-analysis. Blood 106:2710–2715

    Article  PubMed  CAS  Google Scholar 

  56. Wester JPJ, Haas FJ, Biesma DH, Leusink JA, Veth G (2004) Thrombosis and hemorrhage in heparin-induced thrombocytopenia in seriously ill patients. Intensive Care Med 30:1927–1934

    Article  PubMed  Google Scholar 

  57. Koopman MM, Buller HR (2003) Short- and long-acting synthetic pentasaccharides. J Intern Med 254:335–342

    Article  PubMed  CAS  Google Scholar 

  58. Savi P, Chong BH, Greinacher A, Gruel Y, Kelton JG, Warkentin TE, Eichler P, Meuleman D, Petitou M, Herault JP, Cariou R, Herbert JM (2005) Effect of fondaparinux on platelet activation in the presence of heparin-dependent antibodies: a blinded comparative multicenter study with unfractionated heparin. Blood 105:139–144

    Article  PubMed  CAS  Google Scholar 

  59. Bijsterveld NR, Moons AH, Boekholdt SM, van Aken BE, Fennema H, Peters RJ, Meijers JC, Buller HR, Levi M (2002) Ability of recombinant factor VIIa to reverse the anticoagulant effect of the pentasaccharide fondaparinux in healthy volunteers. Circulation 106:2550–2554

    Article  PubMed  CAS  Google Scholar 

  60. Greinacher A (2004) Lepirudin for the treatment of heparin-induced thrombocytopenia. In: Warkentin TE, Greinacher A (ed) Heparin-induced thrombocytopenia, 3rd edn. Dekker, New York, pp 397–436

  61. Greinacher A, Eichler P, Lubenow N, Kwasny H, Luz M (2000) Heparin-induced thrombocytopenia with thromboembolic complications: meta-analysis of 2 prospective trials to assess the value of parenteral treatment with lepirudin and its therapeutic aPTT range. Blood 96:846–881

    PubMed  CAS  Google Scholar 

  62. Fischer KG, van de Loo A, Bohler J (1999) Recombinant hirudin (lepirudin) as anticoagulant in intensive care patients treated with continuous hemodialysis. Kidney Int Suppl 72:46–50

    Google Scholar 

  63. Kern H, Ziemer S, Kox WJ (1999) Bleeding after intermittent or continuous r-hirudin during CVVH. Intensive Care Med 25:1311–1314

    Article  PubMed  CAS  Google Scholar 

  64. Muhl E, Siemens HJ, Kujath P, Bruch HP (2002) Therapy and monitoring of heparin-induced thrombocytopenia type II in critically ill patients during continuous venovenous hemodiafiltration: comparison of aPTT and ecarin clotting tome for monitoring of r-hirudin therapy. J Intensive Care 17:34–40

    Google Scholar 

  65. Wester JPJ, ten Cate J, Oudemans-van Straaten HM, Bosman RJ, van der Spoel JI, Zandstra DF (2003) Lepirudin anticoagulation in critically ill patients with (suspected) heparin-induced thrombocytopenia and thrombosis. J Thromb Haemost 1 [Suppl 1]:P1907

  66. Fischer KG (2002) Hirudin in renal insufficiency. Semin Thromb Hemost 28:467–482

    PubMed  CAS  Google Scholar 

  67. Eichler P, Friesen HJ, Lubenow N, Jaeger B, Greinacher A (2000) Antihirudin antibodies in patients with heparin-induced thrombocytopenia treated with lepirudin: incidence, effects on aPTT, and clinical relevance. Blood 96:2373–2378

    PubMed  CAS  Google Scholar 

  68. Greinacher A, Lubenow N, Eichler P (2003) Anaphylactic and anaphylactoid reactions associated with lepirudin in patients with heparin-induced thrombocytopenia. Circulation 108:2062–2065

    Article  PubMed  CAS  Google Scholar 

  69. Vargas Hein O, von Heymann C, Lipps M, Ziemer S, Ronco C, Neumayer HH, Morgera S, Welte M, Kox WJ, Spies C (2001) Hirudin versus heparin for anticoagulation in continuous renal replacement therapy. Intensive Care Med 27:673–679

    Google Scholar 

  70. Vargas Hein O, von Heymann C, Diehl T, Ziemer S, Ronco C, Morgera S, Siebert G, Kox WJ, Neumayer HH, Spies C (2004) Intermittent hirudin versus continuous heparin for anticoagulation in continuous renal replacement therapy. Ren Fail 26:297–303

    Article  PubMed  CAS  Google Scholar 

  71. Murray PT, Reddy BV, Grossman EJ, Hammes MS, Trevino S, Ferrell J, Tang I, Hursting MJ, Shamp TR, Swan SK (2004) A prospective comparison of three argatroban treatment regimens during hemodialysis in end-stage renal disease. Kidney Int 66:2446–2453

    Article  PubMed  CAS  Google Scholar 

  72. Tang IY, Cox DS, Patel K, Reddy BV, Nahlik L, Trevino S, Murray PT (2005) Argatroban and renal replacement therapy in patients with heparin-induced thrombocytopenia. Ann Pharmacother 39:231–236

    Article  PubMed  CAS  Google Scholar 

  73. Boccardo P, Melacini D, Rota S, Mecca G, Boletta A, Casiraghi F, Gianese F (1997) Individualized anticoagulation with dermatan sulphate for haemodialysis in chronic renal failure. Nephrol Dial Transplant 12:2349–2354

    PubMed  CAS  Google Scholar 

  74. Gianese F, Nurmohamed MT, Imbimbo BP, Buller HR, Berckmans RJ, Ten Cate JW (1993) The pharmacokinetics and pharmacodynamics of dermatan sulphate MF701 during haemodialysis for chronic renal failure. Br J Clin Pharmacol 35:335–339

    PubMed  CAS  Google Scholar 

  75. Bermond F, Fenocchio CM, Cantaluppi V, Guarena C, Pacitti A (2005) Anticoagulation with dermatan sulphate for renal replacement therapy in intensive care units (abstract). Blood Purif 23:167

    Google Scholar 

  76. Langenecker SA, Felfernig M, Werba A, Mueller CM, Chiari A, Zimpfer M (1994) Anticoagulation with prostacyclin and heparin during continuous venovenous hemofiltration. Crit Care Med 22:1774–1781

    Article  PubMed  CAS  Google Scholar 

  77. Kozek-Langenecker SA, Kettner SC, Oismueller C, Gonano C, Speiser W, Zimpfer M (1998) Anticoagulation with prostaglandin E1 and unfractionated heparin during continuous venovenous hemofiltration. Crit Care Med 26:1208–1212

    PubMed  CAS  Google Scholar 

  78. Kozek-Langenecker SA, Spiss CK, Gamsjager T, Domenig C, Zimpfer M (2002) Anticoagulation with prostaglandins and unfractionated heparin during continuous venovenous haemofiltration: a randomized controlled trial. Wien Klin Wochenschr 114:96–101

    PubMed  CAS  Google Scholar 

  79. Fiaccadori E, Maggiore U, Rotelli C, Minari M, Melfa L, Cappe G, Cabassi A (2002) Continuous haemofiltration in acute renal failure with prostacyclin as the sole anti-haemostatic agent. Intensive Care Med 28:586–593

    Article  PubMed  Google Scholar 

  80. Davenport A, Will EJ, Davinson AM (1994) Comparison of the use of standard heparin and prostacyclin anticoagulation in spontaneous and pump-driven extracorporeal circuits in patients with combined acute renal and hepatic failure. Nephron 66:431–437

    Article  PubMed  CAS  Google Scholar 

  81. Kozek-Langenecker SA, Spiss CK, Michalek-Sauberer A, Felfernig M, Zimpfer M (2003) Effect of prostacyclin on platelets, polymorphonuclear cells, and heterotypic cell aggregation during hemofiltration. Crit Care Med 31:864–868

    PubMed  CAS  Google Scholar 

  82. Bihari DJ, Tinker J (1988) The therapeutic value of vasodilator prostaglandins in multiple organ failure associated with sepsis. Intensive Care Med 15:2–7

    PubMed  CAS  Google Scholar 

  83. Uchiba M, Okajima K, Murakami K, Okabe H, Takatsuki K (1995) Inhibition of tissue factor-factor VIIa by nafamostat mesilate; a reply to the rebuttal. Thromb Res 77:381–382

    Article  PubMed  CAS  Google Scholar 

  84. Nakae H, Tajimi K (2003) Pharmacokinetics of nafamostat mesilate during continuous hemodiafiltration with a polyacrylonitrile membrane. Ther Apher Dial 7:483–485

    PubMed  CAS  Google Scholar 

  85. Ohtake Y, Hirasawa H, Sugai T, Oda S, Shiga H, Matsuda K, Kitamura N (1991) Nafamostat mesylate as anticoagulant in continuous hemofiltration and continuous hemodiafiltration. Contrib Nephrol 93:215–217

    PubMed  CAS  Google Scholar 

  86. Hu ZJ, Iwama H, Suzuki R, Kobayashi S, Akutsu I (1999) Time course of activated coagulation time at various sites during continuous haemodiafiltration using nafamostat mesilate. Intensive Care Med 25:524–527

    Article  PubMed  CAS  Google Scholar 

  87. Okada H, Suzuki H, Deguchi N, Saruta T (1992) Agranulocytosis in a haemodialysed patient induced by a proteinase inhibitor, nafamostate mesilate. Nephrol Dial Transplant 7:980

    PubMed  CAS  Google Scholar 

  88. Ookawara S, Tabei K, Sakurai T, Sakairi Y, Furuya H, Asano Y (1996) Additional mechanisms of nafamostat mesilate-associated hyperkalaemia. Eur J Clin Pharmacol 51:149–145

    PubMed  CAS  Google Scholar 

  89. Higuchi N, Yamazaki H, Kikuchi H, Gejyo F (2000) Anaphylactoid reaction induced by a protease inhibitor, nafamostat mesilate, following nine administrations in a hemodialysis patient. Nephron 86:400–401

    Article  PubMed  CAS  Google Scholar 

  90. Esmon CT (2003) The protein C pathway. Chest 124:26–32

    Article  Google Scholar 

  91. Pont AC de, Bouman CS, de Jonge E, Vroom MB, Buller HR, Levi M (2003) Treatment with recombinant human activated protein C obviates additional anticoagulation during continuous venovenous hemofiltration in patients with severe sepsis. Intensive Care Med 29:1205

    Article  PubMed  Google Scholar 

  92. Mehta RL, McDonald BR, Aguilar MM, Ward DM (1990) Regional citrate anticoagulation for continuous arteriovenous hemodialysis in critically ill patients. Kidney Int 38:976–981

    PubMed  CAS  Google Scholar 

  93. Fiore G, Donadio PP, Gianferrari P, Santacroce C, Guermani A (1998) CVVH in postoperative care of liver transplantation. Minerva Anestesiol 64:83–87

    PubMed  CAS  Google Scholar 

  94. Uchino S, Fealy N, Baldwin I, Morimatsu H, Bellomo R (2004) Continuous venovenous hemofiltration without anticoagulation. ASAIO J 50:76–80

    Article  PubMed  CAS  Google Scholar 

  95. Naka T, Wan L, Bellomo R, Wang BZ, Jones R, Berry R, Angus P, Gow P (2004) Kidney failure associated with liver transplantation or liver failure: the impact of continuous veno-venous hemofiltration. Int J Artif Organs 27:949–955

    PubMed  CAS  Google Scholar 

  96. Apsner R, Schwarzenhofer M, Derfler K, Zauner C, Ratheiser K, Kranz A (1997) Impairment of citrate metabolism in acute hepatic failure. Wien Klin Wochenschr 109:123–127

    PubMed  CAS  Google Scholar 

  97. Kramer L, Bauer E, Joukhadar C, Strobl W, Gendo A, Madl C, Gangl A (2003) Citrate pharmacokinetics and metabolism in cirrhotic and noncirrhotic critically ill patients. Crit Care Med 31:2450–2455

    Article  PubMed  CAS  Google Scholar 

  98. Mehta RL, McDonald BR, Ward DM (1991) Regional citrate anticoagulation for continuous arteriovenous hemodialysis. An update after 12 months. Contrib Nephrol 93:210–214

    PubMed  CAS  Google Scholar 

  99. Ward DM, Mehta RL (1993) Extracorporeal management of acute renal failure patients at high risk of bleeding. Kidney Int 43:237–244

    Google Scholar 

  100. Aspner R, Druml W (1998) More on anticoagulation for continuous hemofiltration. N Engl J Med 338:131–132

    Article  PubMed  Google Scholar 

  101. Thoenen M, Schmid ER, Binswanger U, Schuepbach R, Aerne D, Schmidlin D (2002) Regional citrate anticoagulation using a citrate-based substitution solution for continuous venovenous hemofiltration in cardiac surgery patients. Wien Klin Wochenschr 114:108–114

    PubMed  CAS  Google Scholar 

  102. Hofmann RM, Maloney C, Ward DM, Becker BN (2002) A novel method for regional citrate anticoagulation in continuous venovenous hemofiltration (CVVHF). Ren Fail 24:325–335

    Article  PubMed  CAS  Google Scholar 

  103. Gabutti L, Marone C, Colucci G, Duchini F, Schonholzer C (2002) Citrate anticoagulation in continuous venovenous hemodiafiltration: a metabolic challenge. Intensive Care Med 28:1419–1425

    Article  PubMed  Google Scholar 

  104. Tobe SW, Aujla P, Walele AA, Oliver MJ, Naimark DM, Perkins NJ, Beardsall M (2003) A novel regional citrate anticoagulation protocol for CRRT using only commercially available solutions. J Crit Care 18:121–129

    Article  PubMed  CAS  Google Scholar 

  105. Mitchell A, Daul AE, Beiderlinden M, Schafers RF, Heemann U, Kribben A, Peters J, Philipp T, Wenzel RR (2003) A new system for regional citrate anticoagulation in continuous venovenous hemodialysis (CVVHD). Clin Nephrol 59:106–114

    PubMed  CAS  Google Scholar 

  106. Maccariello E, Valente C, Nogueira L, Serpa L, Rocha E (2003) Regional citrate anticoagulation: impact on membrane survival (abstract). Blood Purif 21:183

    Google Scholar 

  107. Swartz R, Pasko D, O'Toole J, Starmann B (2004) Improving the delivery of continuous renal replacement therapy using regional citrate anticoagulation. Clin Nephrol 61:134–143

    PubMed  CAS  Google Scholar 

  108. Morgera S, Scholle C, Voss G, Haase M, Vargas Hein O, Krausch D, Melzer C, Rosseau S, Zuckermann-Becker H, Neumayer HH (2004) Metabolic complications during regional citrate anticoagulation in continuous venovenous hemodialysis: single-center experience. Nephron Clin Pract 97:c131–c136

    Google Scholar 

  109. Monchi M, Berghmans D, Ledoux D, Canivet JL, Dubois B, Damas P (2004) Citrate vs. heparin for anticoagulation in continuous venovenous hemofiltration: a prospective randomized study. Intensive Care Med 30:260–265

    PubMed  Google Scholar 

  110. Kutsogiannis DJ, Gibney RT, Stollery D, Gao J (2005) Regional citrate versus systemic heparin anticoagulation for continuous renal replacement in critically ill patients. Kidney Int 67:2361–2367

    Article  PubMed  CAS  Google Scholar 

  111. Bos JC, Grooteman MP, van Houte AJ, Schoorl M, van Limbeek J, Nube MJ (1997) Low polymorphonuclear cell degranulation during citrate anticoagulation: a comparison between citrate and heparin dialysis. Nephrol Dial Transplant 12:1387–1393

    PubMed  CAS  Google Scholar 

  112. Hofbauer R, Moser D, Frass M, Oberbauer R, Kaye AD, Wagner O, Kapiotis S, Druml W (1999) Effect of anticoagulation on blood membrane interactions during hemodialysis. Kidney Int 56:1578–1583

    Article  PubMed  CAS  Google Scholar 

  113. Carr JA, Silverman N (1999) The heparin-protamine interaction. A review. J Cardiovasc Surg 40:659–666

    CAS  Google Scholar 

  114. Rossmann P, Matoušovic K, Horáèek V (1982) Protamine-heparin aggregates. Virchows Arch 40:81–98

    Article  CAS  Google Scholar 

  115. Biancofiore G, Esposito M, Bindi L, Stefanini A, Bisa M, Boldrini A, Consani G, Filipponi F, Mosca F (2003) Regional filter heparinization for continuous veno-venous hemofiltration in liver transplant recipients. Minerva Anestesiol 69:527–538

    PubMed  CAS  Google Scholar 

  116. Van der Voort PH, Gerritsen RT, Kuiper MA, Egbers PH, Kingma WP, Boerma EC (2005) Filter run time in CVVH: pre- versus post-dilution and nadroparin versus regional heparin-protamine anticoagulation. Blood Purif 23:175–180

    Article  PubMed  CAS  Google Scholar 

  117. Kaplan AA (1985) Predilution versus postdilution for continuous arteriovenous hemofiltration. Trans Am Soc Artif Intern Organs 31:28–32

    PubMed  CAS  Google Scholar 

  118. Honore PM, Wittebolle X, Lozano A (1997) Evaluation of the predilution technique in reducing the occurence of bleeding during CRRT in critically ill patients. Efficacy of predilution in reducing the amount of anticoagulation during CVVH (abstract). Crit Care [Suppl 1]:P97

  119. Clark WR, Turk JE, Kraus MA, Gao D (2003) Dose determinants in continuous renal replacement therapy. Artif Organs 27:815–820

    Article  PubMed  Google Scholar 

  120. Kumar VA, Craig M, Depner TA, Yeun JY (2000) Extended daily dialysis: a new approach to renal replacement for acute renal failure in the intensive care unit. Am J Kidney Dis 36:294–300

    PubMed  CAS  Google Scholar 

  121. Kielstein JT, Kretschmer U, Ernst T, Hafer C, Bahr MJ, Haller H, Fliser D (2004) Efficacy and cardiovascular tolerability of extended dialysis in critically ill patients: a randomized controlled study. Am J Kidney Dis 43:342–349

    PubMed  CAS  Google Scholar 

  122. Opatrny K Jr, Polanska K, Krouzecky A, Vit L, Novak I, Kasal E (2002) The effect of heparin rinse on the biocompatibility of continuous veno-venous hemodiafiltration. Int J Artif Organs 25:520–528

    PubMed  CAS  Google Scholar 

  123. Reeves JH, Seal PF, Voss AL, O'Connor C (1997) Albumin priming does not prolong hemofilter life. ASAIO J 43:193–196

    PubMed  CAS  Google Scholar 

  124. Baldwin I, Tan HK, Bridge N, Bellomo R (2002) Possible strategies to prolong circuit life during hemofiltration: three controlled studies. Ren Fail 24:839–848

    PubMed  Google Scholar 

  125. Sieffert E, Mateo J, Deligeon N, Payen D (1997) Continuous veno-venous hemofiltration (CVVH) using heparin-coated or non heparin-coated membranes in critically ill patients (abstract). Blood Purif 15:125

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Oudemans-van Straaten.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oudemans-van Straaten, H.M., Wester, J.P.J., de Pont, A.C.J.M. et al. Anticoagulation strategies in continuous renal replacement therapy: can the choice be evidence based?. Intensive Care Med 32, 188–202 (2006). https://doi.org/10.1007/s00134-005-0044-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-005-0044-y

Keywords

Navigation