Skip to main content
Log in

Ätiologie, Pathogenese, Klinik, Diagnostik und konservative Therapie des adulten erworbenen Plattfußes

Etiology, pathogenesis, clinical features, diagnostics and conservative treatment of adult flatfoot

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Etwa jeder sechste Erwachsene weist eine Plattfußstellung auf. Die stadienhaft verlaufende Fußfehlstellung ruft bei ca. 10 % der Patienten behandlungsbedürftige Beschwerden hervor. Im unbehandelten Endstadium droht der Verlust der Gehfähigkeit. Die gezielte Therapie erfordert eine korrekte Einordnung des Krankheitsstadiums und umfasst ein breites Spektrum konservativer und operativer Maßnahmen.

Material und Methoden

Gezielte Literaturrecherche in den Datenbanken Pubmed und Medline sowie Erfahrungen aus eigener Praxis.

Diagnostik

Die Funktionseinschränkung der statischen (Springligamentkomplex) und dynamischen (Tibialis-posterior-Sehne) Stabilisatoren führt zu der charakteristischen Fußfehlstellung mit Abflachung der medialen Fußwölbung, valgischer Rückfußachse und Abduktionsstellung des Vorfußes. Im Spätstadium droht eine schwere sekundäre Arthrose im oberen und unteren Sprunggelenkkomplex. Neben der essenziellen klinischen Untersuchung liefern belastete Röntgenaufnahmen im dorsoplantaren und seitlichen Strahlengang objektivierbare Informationen über das Ausmaß der Fehlstellung (Meary-Winkel, Kite-Winkel) und der begleitenden Arthrose. Die „long axis hindfoot view“ erlaubt die Quantifizierung des Rückfußvalgus. Die MRT ist das Mittel der Wahl zur Beurteilung der Tibialis-posterior-Sehne und des Springligamentkomplexes.

Therapie

Die Therapie zielt auf die Schmerzreduktion, Wiederherstellung der Funktion und auf die Vermeidung einer sekundären Arthrose sowie degenerativer Sehnenveränderungen ab. Eine Zunahme der Deformität soll vermieden werden. Sie sollte daher alle drei Komponenten der Deformität – Rückfußvalgus, Vorfußabduktion und Abflachung der Längswölbung – ansprechen und korrigieren. In der akuten Phase ist die Tenosynovialitis der Tibialis-posterior-Sehne gut mit antiinflammatorischer Therapie, mechanischer Entlastung und Krankengymnastik zu behandeln. Langfristig führt sie aber selten zu einer dauerhaften Stabilisierung des Fußes.

Abstract

Background

On average, one in six adults is affected by an acquired flatfoot. This foot deformity is characterized by its progression of stages and in 10% of cases causes complaints that require treatment. Untreated, the loss of walking ability may result in the final stage. Correct staging is crucial to being able to offer a specific course of therapy including a wide spectrum of conservative and operative treatments.

Material and methods

This review is based on pertinent publications retrieved from a selective search in PubMed and Medline and on the authors’ clinical experience.

Diagnostics

The loss of function of static (spring ligament complex) and dynamic (tibialis posterior tendon) stabilizers causes the characteristic deformity with loss of the medial arch, hind foot valgus and forefoot abduction. In the late stage, severe secondary osteoarthritis in upper and lower ankle joints occurs and impedes walking ability. The essential physical examination is supplemented by weight-bearing dorsoplantar and lateral radiographs, which provide further information about axial malalignment (Meary’s angle, Kite‘s angle). The long axis hind foot view allows analysis of the hindfoot valgus. MRI provides further information about the integrity of the tibialis posterior tendon, spring ligament complex and cartilage damage.

Therapy

The therapy aims to reduce pain, regain function and avoid development of secondary osteoarthritis and degenerative tendon disorders. Progress of the deformity should be stopped. Therefore, the main aspects of the deformity—loss of medial arch, hindfoot valgus and forefoot abduction should be addressed and corrected. In the acute phase, tendovaginitis of the tibialis posterior tendon can be treated sufficiently by anti-inflammatory measures, relieving mechanical loads on the tendon and muscle and physiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9

Abbreviations

AFO:

„Arizona ankle-foot“

CNSM :

Ligamentum calcaneonaviculare superomediale

FDL :

Flexor digitorum longus

NSAR :

Nichtsteroidale Antirheumatika

OSG :

Oberes Sprunggelenk

SL :

Springligament

TP :

Tibialis posterior

UCBL :

University of California Berkeley Laboratory

Literatur

  1. Aldebeyan S, Sinno H, Alotaibi M, Makhdom AM, Hamdy RC (2018) Utility outcome assessment of pes planus deformity. Foot Ankle Surg 24(2):119–123. https://doi.org/10.1016/j.fas.2016.12.005

    Article  PubMed  Google Scholar 

  2. Alvarez RG, Marini A, Schmitt C, Saltzman CL (2006) Stage I and II posterior tibial tendon dysfunction treated by a structured nonoperative management protocol. An orthosis and exercise program. Foot Ankle Int 27(1):2–8. https://doi.org/10.1177/107110070602700102

    Article  PubMed  Google Scholar 

  3. Amaha K, Nimura A, Yamaguchi R, Kampan N, Tasaki A, Yamaguchi K, Kato R, Akita K (2019) Anatomic study of the medial side of the ankle base on the joint capsule. An alternative description of the deltoid and spring ligament. J Exp Orthop 6(1):2. https://doi.org/10.1186/s40634-019-0171-y

    Article  PubMed  PubMed Central  Google Scholar 

  4. Arai K, Ringleb SI, Zhao KD, Berglund LJ, Kitaoka HB, Kaufman KR (2007) The effect of flatfoot deformity and tendon loading on the work of friction measured in the posterior tibial tendon. Clin Biomech 22(5):592–598. https://doi.org/10.1016/j.clinbiomech.2007.01.011

    Article  Google Scholar 

  5. Balen PF, Helms CA (2001) Association of posterior tibial tendon injury with spring ligament injury, sinus tarsi abnormality, and plantar fasciitis on MR imaging. AJR Am J Roentgenol 176(5):1137–1143. https://doi.org/10.2214/ajr.176.5.1761137

    Article  CAS  PubMed  Google Scholar 

  6. Benjamin M, Ralphs JR (1998) Fibrocartilage in tendons and ligaments—an adaptation to compressive load. J Anat 193(4):481–494. https://doi.org/10.1046/j.1469-7580.1998.19340481.x

    Article  PubMed  PubMed Central  Google Scholar 

  7. Blackwood CB, Yuen TJ, Sangeorzan BJ, Ledoux WR (2016) The midtarsal joint locking mechanism. Foot Ankle Int 26(12):1074–1080. https://doi.org/10.1177/107110070502601213

    Article  Google Scholar 

  8. Bluman EM, Title CI, Myerson MS (2007) Posterior tibial tendon rupture. A refined classification system. Foot Ankle Clin 12(2):233–249. https://doi.org/10.1016/j.fcl.2007.03.003

    Article  PubMed  Google Scholar 

  9. Buldt AK, Forghany S, Landorf KB, Levinger P, Murley GS, Menz HB (2018) Foot posture is associated with plantar pressure during gait. A comparison of normal, planus and cavus feet. Gait Posture 62:235–240. https://doi.org/10.1016/j.gaitpost.2018.03.005

    Article  PubMed  Google Scholar 

  10. Davis WH, Sobel M, DiCarlo EF, Torzilli PA, Deng X, Geppert MJ, Patel MB, Deland J (2016) Gross, histological, and microvascular anatomy and biomechanical testing of the spring ligament complex. Foot Ankle Int 17(2):95–102. https://doi.org/10.1177/107110079601700207

    Article  Google Scholar 

  11. Deland JT, de Asla RJ, Sung I‑H, Ernberg LA, Potter HG (2016) Posterior tibial tendon insufficiency. Which ligaments are involved? Foot Ankle Int 26(6):427–435. https://doi.org/10.1177/107110070502600601

    Article  Google Scholar 

  12. Desmyttere G, Hajizadeh M, Bleau J, Begon M (2018) Effect of foot orthosis design on lower limb joint kinematics and kinetics during walking in flexible pes planovalgus. A systematic review and meta-analysis. Clin Biomech 59:117–129. https://doi.org/10.1016/j.clinbiomech.2018.09.018

    Article  Google Scholar 

  13. Dunn JE, Link CL, Felson DT, Crincoli MG, Keysor JJ, McKinlay JB (2004) Prevalence of foot and ankle conditions in a multiethnic community sample of older adults. Am J Epidemiol 159(5):491–498. https://doi.org/10.1093/aje/kwh071

    Article  CAS  PubMed  Google Scholar 

  14. Frey C, Shereff M, Greenidge N (1990) Vascularise of the posterior tibial tendon. J Bone Joint Surg Am 72(6):884–888

    Article  CAS  PubMed  Google Scholar 

  15. Gatt A, Chockalingam N, Chevalier TL (2011) Sagittal plane kinematics of the foot during passive ankle dorsiflexion. Prosthet Orthot Int 35(4):425–431. https://doi.org/10.1177/0309364611420476

    Article  PubMed  Google Scholar 

  16. Han K, Bae K, Levine N, Yang J, Lee J‑S (2019) Biomechanical effect of foot orthoses on rearfoot motions and joint moment parameters in patients with flexible flatfoot. Med Sci Monit 25:5920–5928. https://doi.org/10.12659/MSM.918782

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hicks JH (1954) The mechanics of the foot. II. The plantar aponeurosis and the arch. J Anat 88(1):25–30

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hintermann B, Gächter A (2016) The first metatarsal rise sign. A simple, sensitive sign of Tibialis posterior tendon dysfunction. Foot Ankle Int 17(4):236–241. https://doi.org/10.1177/107110079601700410

    Article  Google Scholar 

  19. Hirano T, McCullough MBA, Kitaoka HB, Ikoma K, Kaufman KR (2009) Effects of foot orthoses on the work of friction of the posterior tibial tendon. Clin Biomech 24(9):776–780. https://doi.org/10.1016/j.clinbiomech.2009.07.009

    Article  Google Scholar 

  20. H‑eJ H, Beals TC, Brown NAT (2007) Influence of tendon transfer site on moment arms of the flexor digitorum longus muscle. Foot Ankle Int 28(4):441–447. https://doi.org/10.3113/FAI.2007.0441

    Article  Google Scholar 

  21. Imhauser CW, Abidi NA, Frankel DZ, Gavin K, Siegler S (2002) Biomechanical evaluation of the efficacy of external stabilizers in the conservative treatment of acquired flatfoot deformity. Foot Ankle Int 23(8):727–737. https://doi.org/10.1177/107110070202300809

    Article  PubMed  Google Scholar 

  22. Imhauser CW, Siegler S, Abidi NA, Frankel DZ (2004) The effect of posterior tibialis tendon dysfunction on the plantar pressure characteristics and the kinematics of the arch and the hindfoot. Clin Biomech 19(2):161–169. https://doi.org/10.1016/j.clinbiomech.2003.10.007

    Article  Google Scholar 

  23. Jennings MM, Christensen JC (2008) The effects of sectioning the spring ligament on rearfoot stability and posterior tibial tendon efficiency. J Foot Ankle Surg 47(3):219–224. https://doi.org/10.1053/j.jfas.2008.02.002

    Article  PubMed  Google Scholar 

  24. Johnson KA, Strom DE (1989) Tibialis posterior tendon dysfunction. Clin Orthop Relat Res 239:196–206

    Google Scholar 

  25. Keenan MA, Peabody TD, Gronley JK, Perry J (1991) Valgus deformities of the feet and characteristics of gait in patients who have rheumatoid arthritis. J Bone Joint Surg Am 73(2):237–247

    Article  CAS  PubMed  Google Scholar 

  26. Kitaoka HB, Luo Z‑P, Kura H, An K‑N (2002) Effect of foot orthoses on 3‑dimensional kinematics of flatfoot. A cadaveric study. Arch Phys Med Rehabil 83(6):876–879. https://doi.org/10.1053/apmr.2002.32681

    Article  PubMed  Google Scholar 

  27. Kitaoka HB, Crevoisier XM, Harbst K, Hansen D, Kotajarvi B, Kaufman K (2006) The effect of custom-made braces for the ankle and hindfoot on ankle and foot kinematics and ground reaction forces. Arch Phys Med Rehabil 87(1):130–135. https://doi.org/10.1016/j.apmr.2005.08.120

    Article  PubMed  Google Scholar 

  28. Kong A, van der Vliet A (2008) Imaging of tibialis posterior dysfunction. Br J Radiol 81(970):826–836. https://doi.org/10.1259/bjr/78613086

    Article  CAS  PubMed  Google Scholar 

  29. La Cifuentes-De Portilla C, Larrainzar-Garijo R, Bayod J (2019) Biomechanical stress analysis of the main soft tissues associated with the development of adult acquired flatfoot deformity. Clin Biomech 61:163–171. https://doi.org/10.1016/j.clinbiomech.2018.12.009

    Article  Google Scholar 

  30. Ling SK‑K, Lui TH (2017) Posterior tibial tendon dysfunction. An overview. Open Orthop J 11:714–723. https://doi.org/10.2174/1874325001711010714

    Article  PubMed  PubMed Central  Google Scholar 

  31. McCullough MBA, Ringleb SI, Arai K, Kitaoka HB, Kaufman KR (2011) Moment arms of the ankle throughout the range of motion in three planes. Foot Ankle Int 32(3):300–306. https://doi.org/10.3113/FAI.2011.0300

    Article  PubMed  Google Scholar 

  32. Mengiardi B, Pinto C, Zanetti M (2016) Spring ligament complex and posterior tibial tendon. MR anatomy and findings in acquired adult flatfoot deformity. Semin Musculoskelet Radiol 20(1):104–115. https://doi.org/10.1055/s-0036-1580616

    Article  PubMed  Google Scholar 

  33. Miller TT, Staron RB, Feldman F, Parisien M, Glucksman WJ, Gandolfo LH (1995) The symptomatic accessory tarsal navicular bone. Assessment with MR imaging. Radiology 195(3):849–853. https://doi.org/10.1148/radiology.195.3.7754020

    Article  CAS  PubMed  Google Scholar 

  34. Murley GS, Menz HB, Landorf KB (2009) Foot posture influences the electromyographic activity of selected lower limb muscles during gait. J Foot Ankle Res 2(1):6. https://doi.org/10.1186/1757-1146-2-35

    Article  Google Scholar 

  35. Muto T, Kokubu T, Mifune Y, Inui A, Harada Y, Yoshifumi FT, Kuroda R, Kurosaka M (2014) Temporary inductions of matrix metalloprotease‑3 (MMP-3) expression and cell apoptosis are associated with tendon degeneration or rupture after corticosteroid injection. J Orthop Res 32(10):1297–1304. https://doi.org/10.1002/jor.22681

    Article  CAS  PubMed  Google Scholar 

  36. Myerson MS (1997) Adult acquired flatfoot deformity. Treatment of dysfunction of the posterior tibial tendon. Instr Course Lect 46:393–405

    CAS  PubMed  Google Scholar 

  37. Ness ME, Long J, Marks R, Harris G (2008) Foot and ankle kinematics in patients with posterior tibial tendon dysfunction. Gait Posture 27(2):331–339. https://doi.org/10.1016/j.gaitpost.2007.04.014

    Article  PubMed  Google Scholar 

  38. Neville C, Lemley FR (2012) Effect of ankle-foot orthotic devices on foot kinematics in Stage II posterior tibial tendon dysfunction. Foot Ankle Int 33(5):406–414. https://doi.org/10.3113/FAI.2012.0406

    Article  PubMed  PubMed Central  Google Scholar 

  39. Neville C, Flemister AS, Houck JR (2009) Effects of the AirLift PTTD brace on foot kinematics in subjects with stage II posterior tibial tendon dysfunction. J Orthop Sports Phys Ther 39(3):201–209. https://doi.org/10.2519/jospt.2009.2908

    Article  PubMed  Google Scholar 

  40. Neville C, Flemister AS, Houck J (2013) Total and distributed plantar loading in subjects with stage II tibialis posterior tendon dysfunction during terminal stance. Foot Ankle Int 34(1):131–139. https://doi.org/10.1177/1071100712460181

    Article  PubMed  Google Scholar 

  41. Neville CG, Houck JR (2009) Choosing among 3 ankle-foot orthoses for a patient with stage II posterior tibial tendon dysfunction. J Orthop Sports Phys Ther 39(11):816–824. https://doi.org/10.2519/jospt.2009.3107

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nichols AW (2005) Complications associated with the use of corticosteroids in the treatment of athletic injuries. Clin J Sport Med 15(5):370–375. https://doi.org/10.1097/01.jsm.0000179233.17885.18

    Article  PubMed  Google Scholar 

  43. Ormsby N, Jackson G, Evans P, Platt S (2018) Imaging of the tibionavicular ligament, and its potential role in adult acquired flatfoot deformity. Foot Ankle Int 39(5):629–635. https://doi.org/10.1177/1071100718764680

    Article  PubMed  Google Scholar 

  44. Pasapula C, Devany A, Magan A, Memarzadeh A, Pasters V, Shariff S (2015) Neutral heel lateral push test. The first clinical examination of spring ligament integrity. Foot 25(2):69–74. https://doi.org/10.1016/j.foot.2015.02.003

    Article  PubMed  Google Scholar 

  45. Petersen W, Hohmann G, Stein V, Tillmann B (2002) The blood supply of the posterior tibial tendon. J Bone Joint Surg 84(1):141–144. https://doi.org/10.1302/0301-620X.84B1.11592

    Article  CAS  Google Scholar 

  46. Petersen W, Hohmann G, Pufe T, Tsokos M, Zantop T, Paulsen F, Tillmann B (2004) Structure of the human tibialis posterior tendon. Arch Orthop Trauma Surg 124(4):237–242. https://doi.org/10.1007/s00402-003-0500-5

    Article  PubMed  Google Scholar 

  47. Reilingh ML, Beimers L, Tuijthof GJM, Stufkens SAS, Maas M, van Dijk CN (2010) Measuring hindfoot alignment radiographically. The long axial view is more reliable than the hindfoot alignment view. Skelet Radiol 39(11):1103–1108. https://doi.org/10.1007/s00256-009-0857-9

    Article  Google Scholar 

  48. Richie DH (2007) Biomechanics and clinical analysis of the adult acquired flatfoot. Clin Podiatr Med Surg 24(4):617–644. https://doi.org/10.1016/j.cpm.2007.07.003

    Article  PubMed  Google Scholar 

  49. Ringleb SI, Kavros SJ, Kotajarvi BR, Hansen DK, Kitaoka HB, Kaufman KR (2007) Changes in gait associated with acute stage II posterior tibial tendon dysfunction. Gait Posture 25(4):555–564. https://doi.org/10.1016/j.gaitpost.2006.06.008

    Article  CAS  PubMed  Google Scholar 

  50. Root SA (Hrsg) (1977) Normal and abnormal function of the foot. Clinical Biomechanics, Bd. 2. Oxford Academic, Los Angeles

    Google Scholar 

  51. Schünke M, Schulte E, Schumacher U (2007) Prometheus – LernAtlas der Anatomie. Allgemeine Anatomie und Bewegungssystem, 2. Aufl. Thieme, Stuttgart (182 Tabellen)

    Google Scholar 

  52. Schweitzer ME, Karasick D (2000) MR imaging of disorders of the posterior tibialis tendon. AJR Am J Roentgenol 175(3):627–635. https://doi.org/10.2214/ajr.175.3.1750627

    Article  CAS  PubMed  Google Scholar 

  53. Smyth NA, Aiyer AA, Kaplan JR, Carmody CA, Kadakia AR (2017) Adult-acquired flatfoot deformity. Eur J Orthop Surg Traumatol 27(4):433–439. https://doi.org/10.1007/s00590-017-1945-5

    Article  PubMed  Google Scholar 

  54. Tao K, Ji W‑T, Wang D‑M, Wang C‑T, Wang X (2010) Relative contributions of plantar fascia and ligaments on the arch static stability. A finite element study. Biomed Tech 55(5):265–271. https://doi.org/10.1515/BMT.2010.041

    Article  Google Scholar 

  55. Tenenbaum S, Hershkovich O, Gordon B, Bruck N, Thein R, Derazne E, Tzur D, Shamiss A, Afek A (2013) Flexible pes planus in adolescents. Body mass index, body height, and gender—an epidemiological study. Foot Ankle Int 34(6):811–817. https://doi.org/10.1177/1071100712472327

    Article  PubMed  Google Scholar 

  56. Uchiyama E, Kitaoka HB, Fujii T, Luo Z‑P, Momose T, Berglund LJ, An K‑N (2006) Gliding resistance of the posterior tibial tendon. Foot Ankle Int 27(9):723–727. https://doi.org/10.1177/107110070602700912

    Article  PubMed  Google Scholar 

  57. van Boerum DH, Sangeorzan BJ (2003) Biomechanics and pathophysiology of flat foot. Foot Ankle Clin 8(3):419–430. https://doi.org/10.1016/S1083-7515(03)00084-6

    Article  PubMed  Google Scholar 

  58. Walters JL, Mendicino SS (2014) The flexible adult flatfoot. Clin Podiatr Med Surg 31(3):329–336. https://doi.org/10.1016/j.cpm.2014.03.005

    Article  PubMed  Google Scholar 

  59. Williams G, Widnall J, Evans P, Platt S (2014) Could failure of the spring ligament complex be the driving force behind the development of the adult flatfoot deformity? J Foot Ankle Surg 53(2):152–155. https://doi.org/10.1053/j.jfas.2013.12.011

    Article  PubMed  Google Scholar 

  60. Wood EV, Syed A, Geary NP (2009) Clinical tip. The reverse Coleman block test radiograph. Foot Ankle Int 30(7):708–710. https://doi.org/10.3113/FAI.2009.0708

    Article  PubMed  Google Scholar 

  61. Xu R, Wang Z, Ren Z, Ma T, Jia Z, Fang S, Jin H (2019) Comparative study of the effects of customized 3D printed insole and prefabricated insole on plantar pressure and comfort in patients with symptomatic flatfoot. Med Sci Monit 25:3510–3519. https://doi.org/10.12659/MSM.916975

    Article  PubMed  PubMed Central  Google Scholar 

  62. Younger AS, Sawatzky B, Dryden P (2016) Radiographic assessment of adult flatfoot. Foot Ankle Int 26(10):820–825. https://doi.org/10.1177/107110070502601006

    Article  Google Scholar 

  63. Zhang J, Keenan C, Wang JH‑C (2013) The effects of dexamethasone on human patellar tendon stem cells. Implications for dexamethasone treatment of tendon injury. J Orthop Res 31(1):105–110. https://doi.org/10.1002/jor.22193

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Gutteck.

Ethics declarations

Interessenkonflikt

N. Gutteck, S. Schilde, K.S. Delank und D. Arbab geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

N. Gutteck und S. Schilde teilen sich die Erstautorenschaft.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutteck, N., Schilde, S., Delank, K.S. et al. Ätiologie, Pathogenese, Klinik, Diagnostik und konservative Therapie des adulten erworbenen Plattfußes. Orthopäde 49, 942–953 (2020). https://doi.org/10.1007/s00132-020-03995-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-020-03995-5

Schlüsselwörter

Keywords

Navigation