Skip to main content
Log in

The epigenome and postnatal environmental influences in psychotic disorders

  • Invited Reviews
  • Published:
Social Psychiatry and Psychiatric Epidemiology Aims and scope Submit manuscript

Abstract

Objectives

Schizophrenia spectrum disorders and bipolar spectrum disorders are the product of both heritable and non-heritable factors, the impact of which converges at different biological levels. Recent evidence from molecular approaches has provided new insights about how environmental exposures cause persistent alterations in the regulation of gene expression, particularly by so-called epigenetic mechanisms. The aim of this review is to provide an overview of findings of epigenetic studies in psychotic disorders, summarizing findings of human and animal studies on epigenetic alterations due to postnatal environmental exposures associated with psychotic disorders.

Methods

Electronic and manual literature search of MEDLINE, EMBASE and PSYCHINFO, using a range of search terms around epigenetics, DNA methylation, histone modifications, psychoses, schizophrenia, bipolar disorder and environmental risks associated with psychotic disorders as observed in human and experimental animal studies, complemented by review articles and cross-references.

Results

Despite several promising findings of differential epigenetic profiles in individuals with psychotic disorders in the studies published to date, the knowledge of the role of epigenetic processes in psychotic disorder remains very limited, and should be interpreted cautiously given various challenges in this rapidly evolving field of research.

Conclusions

Integration of epigenetic findings into biopsychosocial models of the etiology of psychotic disorders eventually may yield important insights into the biological underpinnings of the onset and course of psychotic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Lichtenstein P, Yip BH, Bjork C, Pawitan Y, Cannon TD, Sullivan PF, Hultman CM (2009) Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 373(9659):234–239. doi:10.1016/S0140-6736(09)60072-6

    CAS  PubMed  Google Scholar 

  2. Lee SH, Ripke S, Neale BM et al (2013) Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet 45(9):984–994. doi:10.1038/ng.2711

    CAS  PubMed  Google Scholar 

  3. Leboyer M, Meyer-Lindenberg A, Stetanis N, Rutten BPF, Arango C, Jones P, Kapur S, Lewis S, Murray R, Owen MJ, Schizophrenia EN (2008) Schizophrenia aetiology: do gene–environment interactions hold the key? Schizophr Res 102(1–3):21–26. doi:10.1016/J.Schres.04.003

    Google Scholar 

  4. van Os J, Rutten BP (2009) Gene–environment-wide interaction studies in psychiatry. Am J Psychiatry 166(9):964–966. doi:10.1176/appi.ajp.2008.09060904

    PubMed  Google Scholar 

  5. van Os J, Kenis G, Rutten BP (2010) The environment and schizophrenia. Nature 468(7321):203–212. doi:10.1038/nature09563

    PubMed  Google Scholar 

  6. Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10(1):40–68. doi:10.1038/Sj.Mp.4001558

    CAS  PubMed  Google Scholar 

  7. de Jong S, Boks MP, Fuller TF, Strengman E, Janson E, de Kovel CG, Ori AP, Vi N, Mulder F, Blom JD, Glenthoj B, Schubart CD, Cahn W, Kahn RS, Horvath S, Ophoff RA (2012) A gene co-expression network in whole blood of schizophrenia patients is independent of antipsychotic-use and enriched for brain-expressed genes. PLoS One 7(6):e39498. doi:10.1371/journal.pone.0039498

    PubMed Central  PubMed  Google Scholar 

  8. Kofink D, Boks MP, Timmers HT, Kas MJ (2013) Epigenetic dynamics in psychiatric disorders: environmental programming of neurodevelopmental processes. Neurosci Biobehav Rev 37(5):831–845. doi:10.1016/j.neubiorev.2013.03.020

    PubMed  Google Scholar 

  9. Chuang JC, Jones PA (2007) Epigenetics and microRNAs. Pediatr Res 61(5 Pt 2):24R–29R. doi:10.1203/pdr.0b013e3180457684

    CAS  PubMed  Google Scholar 

  10. van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316(5824):575–579. doi:10.1126/science.1139089

    PubMed  Google Scholar 

  11. Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38(1):23–38. doi:10.1038/npp.2012.112

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Yu M, Hon GC, Szulwach KE, Song CX, Zhang L, Kim A, Li X, Dai Q, Shen Y, Park B, Min JH, Jin P, Ren B, He C (2012) Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149(6):1368–1380. doi:10.1016/j.cell.2012.04.027

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Akbarian S, Huang HS (2008) Epigenetic regulation in human brain-focus on histone lysine methylation. Biol Psychiatry 65(3):198–203. doi:10.1016/J.Biopsych.08.015

    PubMed Central  PubMed  Google Scholar 

  14. Peerbooms OL, Wichers M, Jacobs N, Kenis G, Derom C, Vlietinck R, Thiery E, van Os J, Rutten BP (2010) No major role for X-inactivation in variations of intelligence and behavioral problems at middle childhood. Am J Med Genet B Neuropsychiatr Genet 153B(7):1311–1317. doi:10.1002/ajmg.b.31111

    CAS  PubMed  Google Scholar 

  15. Smits L, Pedersen C, Mortensen P, van Os J (2004) Association between short birth intervals and schizophrenia in the offspring. Schizophr Res 70(1):49–56. doi:10.1016/J.Schres.10.002

    PubMed  Google Scholar 

  16. Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L, Jia P, Assadzadeh A, Flanagan J, Schumacher A, Wang SC, Petronis A (2008) Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet 82(3):696–711. doi:10.1016/j.ajhg.2008.01.008

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Melas PA, Rogdaki M, Osby U, Schalling M, Lavebratt C, Ekstrom TJ (2012) Epigenetic aberrations in leukocytes of patients with schizophrenia: association of global DNA methylation with antipsychotic drug treatment and disease onset. FASEB J 26(6):2712–2718. doi:10.1096/Fj.11-202069

    CAS  PubMed  Google Scholar 

  18. Shimabukuro M, Sasaki T, Imamura A, Tsujita T, Fuke C, Umekage T, Tochigi M, Hiramatsu K, Miyazaki T, Oda T, Sugimoto J, Jinno Y, Okazaki Y (2007) Global hypomethylation of peripheral leukocyte DNA in male patients with schizophrenia: a potential link between epigenetics and schizophrenia. J Psychiatr Res 41(12):1042–1046. doi:10.1016/J.Jpsychires.08.006

    PubMed  Google Scholar 

  19. Dempster EL, Pidsley R, Schalkwyk LC, Owens S, Georgiades A, Kane F, Kalidindi S, Picchioni M, Kravariti E, Toulopoulou T, Murray RM, Mill J (2011) Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Hum Mol Genet 20(24):4786–4796. doi:10.1093/hmg/ddr416

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Bromberg A, Levine J, Nemetz B, Belmaker RH, Agam G (2008) No association between global leukocyte DNA methylation and homocysteine levels in schizophrenia patients. Schizophr Res 101(1–3):50–57. doi:10.1016/J.Schres.01.009

    CAS  PubMed  Google Scholar 

  21. Bromberg A, Bersudsky Y, Levine J, Agam G (2009) Global leukocyte DNA methylation is not altered in euthymic bipolar patients. J Affect Disord 118(1–3):234–239. doi:10.1016/J.Jad.01.031

    CAS  PubMed  Google Scholar 

  22. Rosa A, Picchioni MM, Kalidindi S, Loat CS, Knight J, Toulopoulou T, Vonk R, van der Schot AC, Nolen W, Kahn RS, McGuffin P, Murray RM, Craig IW (2008) Differential methylation of the X-chromosome is a possible source of discordance for bipolar disorder female monozygotic twins. Am J Med Genet B 147B(4):459–462. doi:10.1002/Ajmg.B.30616

    Google Scholar 

  23. Gavin DP, Rosen C, Chase K, Grayson DR, Tun N, Sharma RP (2009) Dimethylated lysine 9 of histone 3 is elevated in schizophrenia and exhibits a divergent response to histone deacetylase inhibitors in lymphocyte cultures. J Psychiatry Neurosci 34(3):232–237

    PubMed Central  PubMed  Google Scholar 

  24. Akbarian S, Ruehl MG, Bliven E, Luiz LA, Peranelli AC, Baker SP, Roberts RC, Bunney WE Jr, Conley RC, Jones EG, Tamminga CA, Guo Y (2005) Chromatin alterations associated with down-regulated metabolic gene expression in the prefrontal cortex of subjects with schizophrenia. Arch Gen Psychiatry 62(8):829–840. doi:10.1001/archpsyc.62.8.829

    CAS  PubMed  Google Scholar 

  25. Howes OD, Murray RM (2013) Schizophrenia: an integrated sociodevelopmental-cognitive model. Lancet. doi:10.1016/S0140-6736(13)62036-X

    PubMed Central  Google Scholar 

  26. Abdolmaleky HM, Cheng KH, Faraone SV, Wilcox M, Glatt SJ, Gao F, Smith CL, Shafa R, Aeali B, Carnevale J, Pan H, Papageorgis P, Ponte JF, Sivaraman V, Tsuang MT, Thiagalingam S (2006) Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet 15(21):3132–3145. doi:10.1093/hmg/ddl253

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Nohesara S, Ghadirivasfi M, Mostafavi S, Eskandari MR, Ahmadkhaniha H, Thiagalingam S, Abdolmaleky HM (2011) DNA hypomethylation of MB-COMT promoter in the DNA derived from saliva in schizophrenia and bipolar disorder. J Psychiatr Res 45(11):1432–1438. doi:10.1016/j.jpsychires.2011.06.013

    PubMed  Google Scholar 

  28. Dempster EL, Mill J, Craig IW, Collier DA (2006) The quantification of COMT mRNA in post mortem cerebellum tissue: diagnosis, genotype, methylation and expression. BMC Med Genet 7:10

    PubMed Central  PubMed  Google Scholar 

  29. Petronis A, Gottesman II, Kan P, Kennedy JL, Basile VS, Paterson AD, Popendikyte V (2003) Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr Bull 29(1):169–178

    PubMed  Google Scholar 

  30. Kordi-Tamandani DM, Sahranavard R, Torkamanzehi A (2013) Analysis of association between dopamine receptor genes’ methylation and their expression profile with the risk of schizophrenia. Psychiatr Genet 23(5):183–187. doi:10.1097/Ypg.0b013e328363d6e1

    CAS  PubMed  Google Scholar 

  31. Zhang AP, Yu J, Liu JX, Zhang HY, Du YY, Zhu JD, He G, Li XW, Gu NF, Feng GY, He L (2007) The DNA methylation profile within the 5’-regulatory region of DRD2 in discordant sib pairs with schizophrenia. Schizophr Res 90(1–3):97–103. doi:10.1016/J.Schres.11.007

    PubMed  Google Scholar 

  32. Kordi-Tamandani DM, Dahmardeh N, Torkamanzehi A (2013) Evaluation of hypermethylation and expression pattern of GMR2, GMR5, GMR8, and GRIA3 in patients with schizophrenia. Gene 515(1):163–166. doi:10.1016/j.gene.2012.10.075

    CAS  PubMed  Google Scholar 

  33. Benes FM, Lim B, Matzilevich D, Walsh JP, Subburaju S, Minns M (2007) Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars. Proc Natl Acad Sci U S A 104(24):10164–10169. doi:10.1073/pnas.0703806104

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevini V, Dwivedi Y, Grayson DR, Impagnatiello F, Pandey G, Pesold C, Sharma R, Uzunov D, Costa E (2000) Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiat 57(11):1061–1069

    CAS  PubMed  Google Scholar 

  35. Huang HS, Matevossian A, Whittle C, Kim SY, Schumacher A, Baker SP, Akbarian S (2007) Prefrontal dysfunction in schizophrenia involves mixed-lineage leukemia 1-regulated histone methylation at GABAergic gene promoters. J Neurosci 27(42):11254–11262. doi:10.1523/Jneurosci.3272-07

    CAS  PubMed  Google Scholar 

  36. Veldic M, Guidotti A, Maloku E, Davis JM, Costa E (2005) In psychosis, cortical interneurons overexpress DNA-methyltransferase 1. Proc Natl Acad Sci U S A 102(6):2152–2157. doi:10.1073/pnas.0409665102

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Boulle F, van den Hove DL, Jakob SB, Rutten BP, Hamon M, van Os J, Lesch KP, Lanfumey L, Steinbusch HW, Kenis G (2012) Epigenetic regulation of the BDNF gene: implications for psychiatric disorders. Mol Psychiatry 17(6):584–596. doi:10.1038/mp.2011.107

    CAS  PubMed  Google Scholar 

  38. Ikegame T, Bundo M, Sunaga F, Asai T, Nishimura F, Yoshikawa A, Kawamura Y, Hibino H, Tochigi M, Kakiuchi C, Sasaki T, Kato T, Kasai K, Iwamoto K (2013) DNA methylation analysis of BDNF gene promoters in peripheral blood cells of schizophrenia patients. Neurosci Res. doi:10.1016/j.neures.2013.08.004

    PubMed  Google Scholar 

  39. dell’Osso B, d’Addario C, Palazzo M, Cattaneo E, Galimberti D, Scarpini E, Bresolin N, Arosio B, Bergamaschini L, Candeletti S, Romualdi P, Altamura AC (2011) Selective DNA Methylation of Bdnf promoter and nociceptin gene in bipolar disorder. Eur Psychiat 26

  40. Ziller MJ, Gu H, Muller F, Donaghey J, Tsai LT, Kohlbacher O, De Jager PL, Rosen ED, Bennett DA, Bernstein BE, Gnirke A, Meissner A (2013) Charting a dynamic DNA methylation landscape of the human genome. Nature 500(7463):477–481. doi:10.1038/nature12433

    CAS  PubMed  Google Scholar 

  41. Kinoshita M, Numata S, Tajima A, Shimodera S, Ono S, Imamura A, Iga J, Watanabe S, Kikuchi K, Kubo H, Nakataki M, Sumitani S, Imoto I, Okazaki Y, Ohmori T (2013) DNA methylation signatures of peripheral leukocytes in schizophrenia. Neuromolecular Med 15(1):95–101. doi:10.1007/S12017-012-8198-6

    CAS  PubMed  Google Scholar 

  42. Aberg KA, McClay JL, Nerella S, Clark S, Kumar G, Chen W, Khachane AN, Xie L, Hudson A, Gao G, Harada A, Hultman CM, Sullivan PF, Magnusson PK, van den Oord EJ (2014) Methylome-wide association study of Schizophrenia: identifying blood biomarker signatures of environmental insults. JAMA Psychiatry. doi:10.1001/jamapsychiatry.2013.3730

    PubMed  Google Scholar 

  43. Zhubi A, Veldic M, Puri NV, Kadriu B, Caruncho H, Loza I, Sershen H, Lajtha A, Smith RC, Guidotti A, Davis JM, Costa E (2009) An upregulation of DNA-methyltransferase 1 and 3a expressed in telencephalic GABAergic neurons of schizophrenia patients is also detected in peripheral blood lymphocytes. Schizophr Res 111(1–3):115–122. doi:10.1016/J.Schres.03.020

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Veldic M, Caruncho HJ, Liu WS, Davis J, Satta R, Grayson DR, Guidotti A, Costa E (2004) DNA-methyltransferase 1 mRNA is selectively overexpressed in telencephalic GABAergic interneurons of schizophrenia brains. Proc Natl Acad Sci U S A 101(1):348–353. doi:10.1073/pnas.2637013100

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Zhang C, Fang Y, Xie B, Cheng W, Du Y, Wang D, Yu S (2009) DNA methyltransferase 3B gene increases risk of early onset schizophrenia. Neurosci Lett 462(3):308–311. doi:10.1016/j.neulet.2009.06.085

    CAS  PubMed  Google Scholar 

  46. Kale A, Naphade N, Sapkale S, Kamaraju M, Pillai A, Joshi S, Mahadik S (2010) Reduced folic acid, vitamin B12 and docosahexaenoic acid and increased homocysteine and cortisol in never-medicated schizophrenia patients: implications for altered one-carbon metabolism. Psychiatry Res 175(1–2):47–53. doi:10.1016/j.psychres.2009.01.013

    CAS  PubMed  Google Scholar 

  47. Guidotti A, Ruzicka W, Grayson DR, Veldic M, Pinna G, Davis JM, Costa E (2007) S-adenosyl methionine and DNA methyltransferase-1 mRNA overexpression in psychosis. NeuroReport 18(1):57–60. doi:10.1097/WNR.0b013e32800fefd7

    CAS  PubMed  Google Scholar 

  48. Peerbooms OL, van Os J, Drukker M, Kenis G, Hoogveld L, de Hert M, Delespaul P, van Winkel R, Rutten BP (2011) Meta-analysis of MTHFR gene variants in schizophrenia, bipolar disorder and unipolar depressive disorder: evidence for a common genetic vulnerability? Brain Behav Immun 25(8):1530–1543. doi:10.1016/j.bbi.2010.12.006

    CAS  PubMed  Google Scholar 

  49. Roffman JL, Brohawn DG, Nitenson AZ, Macklin EA, Smoller JW, Goff DC (2013) Genetic variation throughout the folate metabolic pathway influences negative symptom severity in schizophrenia. Schizophr Bull 39(2):330–338. doi:10.1093/schbul/sbr150

    PubMed  Google Scholar 

  50. Roffman JL, Lamberti JS, Achtyes E, Macklin EA, Galendez GC, Raeke LH, Silverstein NJ, Smoller JW, Hill M, Goff DC (2013) Randomized multicenter investigation of folate plus vitamin B12 supplementation in schizophrenia. JAMA Psychiatry 70(5):481–489. doi:10.1001/jamapsychiatry.2013.900

    CAS  PubMed  Google Scholar 

  51. Liu Y, Chen G, Norton N, Liu W, Zhu H, Zhou P, Luan M, Yang S, Chen X, Carroll L, Williams NM, O’Donovan MC, Kirov G, Owen MJ (2009) Whole genome association study in a homogenous population in Shandong peninsula of China reveals JARID2 as a susceptibility gene for schizophrenia. J Biomed Biotechnol 2009:536918. doi:10.1155/2009/536918

    PubMed Central  PubMed  Google Scholar 

  52. Kirov G, Pocklington AJ, Holmans P, Ivanov D, Ikeda M, Ruderfer D, Moran J, Chambert K, Toncheva D, Georgieva L, Grozeva D, Fjodorova M, Wollerton R, Rees E, Nikolov I, van de Lagemaat LN, Bayes A, Fernandez E, Olason PI, Bottcher Y, Komiyama NH, Collins MO, Choudhary J, Stefansson K, Stefansson H, Grant SG, Purcell S, Sklar P, O’Donovan MC, Owen MJ (2012) De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry 17(2):142–153. doi:10.1038/mp.2011.154

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Han H, Yu Y, Shi J, Yao Y, Li W, Kong N, Wu Y, Wang C, Wang S, Meng X, Kou C (2013) Associations of histone deacetylase-2 and histone deacetylase-3 genes with schizophrenia in a Chinese population. Asia Pac Psychiatry 5(1):11–16. doi:10.1111/j.1758-5872.2012.00205.x

    PubMed  Google Scholar 

  54. Kim T, Park JK, Kim HJ, Chung JH, Kim JW (2010) Association of histone deacetylase genes with schizophrenia in Korean population. Psychiatry Res 178(2):266–269. doi:10.1016/j.psychres.2009.05.007

    CAS  PubMed  Google Scholar 

  55. Sharma RP, Grayson DR, Gavin DP (2008) Histone deactylase 1 expression is increased in the prefrontal cortex of schizophrenia subjects: analysis of the National Brain Databank microarray collection. Schizophr Res 98(1–3):111–117. doi:10.1016/j.schres.2007.09.020

    PubMed Central  PubMed  Google Scholar 

  56. Hobara T, Uchida S, Otsuki K, Matsubara T, Funato H, Matsuo K, Suetsugi M, Watanabe Y (2010) Altered gene expression of histone deacetylases in mood disorder patients. J Psychiatr Res 44(5):263–270. doi:10.1016/j.jpsychires.2009.08.015

    PubMed  Google Scholar 

  57. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    CAS  PubMed  Google Scholar 

  58. (2011) Genome-wide association study identifies five new schizophrenia loci. Nat Genet 43(10):969–976. doi:10.1038/ng.940

  59. Green MJ, Cairns MJ, Wu J, Dragovic M, Jablensky A, Tooney PA, Scott RJ, Carr VJ (2013) Genome-wide supported variant MIR137 and severe negative symptoms predict membership of an impaired cognitive subtype of schizophrenia. Mol Psychiatry 18(7):774–780. doi:10.1038/mp.2012.84

    CAS  PubMed  Google Scholar 

  60. Lett TA, Chakavarty MM, Felsky D, Brandl EJ, Tiwari AK, Goncalves VF, Rajji TK, Daskalakis ZJ, Meltzer HY, Lieberman JA, Lerch JP, Mulsant BH, Kennedy JL, Voineskos AN (2013) The genome-wide supported microRNA-137 variant predicts phenotypic heterogeneity within schizophrenia. Mol Psychiatry 18(4):443–450. doi:10.1038/mp.2013.17

    CAS  PubMed  Google Scholar 

  61. Whalley HC, Papmeyer M, Romaniuk L, Sprooten E, Johnstone EC, Hall J, Lawrie SM, Evans KL, Blumberg HP, Sussmann JE, McIntosh AM (2012) Impact of a microRNA MIR137 susceptibility variant on brain function in people at high genetic risk of schizophrenia or bipolar disorder. Neuropsychopharmacology 37(12):2720–2729. doi:10.1038/npp.2012.137

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Labrie V, Pai S, Petronis A (2012) Epigenetics of major psychosis: progress, problems and perspectives. Trends Genet 28(9):427–435. doi:10.1016/j.tig.2012.04.002

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Szulwach KE, Li X, Li Y, Song CX, Wu H, Dai Q, Irier H, Upadhyay AK, Gearing M, Levey AI, Vasanthakumar A, Godley LA, Chang Q, Cheng X, He C, Jin P (2011) 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci 14(12):1607–1616. doi:10.1038/nn.2959

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Rutten BP, Hammels C, Geschwind N, Menne-Lothmann C, Pishva E, Schruers K, van den Hove D, Kenis G, van Os J, Wichers M (2013) Resilience in mental health: linking psychological and neurobiological perspectives. Acta Psychiatr Scand 128(1):3–20. doi:10.1111/acps.12095

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Rutten BP, Mill J (2009) Epigenetic mediation of environmental influences in major psychotic disorders. Schizophr Bull 35(6):1045–1056. doi:10.1093/schbul/sbp104

    PubMed Central  PubMed  Google Scholar 

  66. Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7(8):847–854. doi:10.1038/nn1276

    CAS  PubMed  Google Scholar 

  67. Wand GS, Oswald LM, McCaul ME, Wong DF, Johnson E, Zhou Y, Kuwabara H, Kumar A (2007) Association of amphetamine-induced striatal dopamine release and cortisol responses to psychological stress. Neuropsychopharmacology 32(11):2310–2320. doi:10.1038/sj.npp.1301373

    CAS  PubMed  Google Scholar 

  68. Webster MJ, Knable MB, O’Grady J, Orthmann J, Weickert CS (2002) Regional specificity of brain glucocorticoid receptor mRNA alterations in subjects with schizophrenia and mood disorders. Mol Psychiatry 7(9):985–994, 924. doi:10.1038/sj.mp.4001139

    Google Scholar 

  69. Ouellet-Morin I, Odgers CL, Danese A, Bowes L, Shakoor S, Papadopoulos AS, Caspi A, Moffitt TE, Arseneault L (2011) Blunted cortisol responses to stress signal social and behavioral problems among maltreated/bullied 12-year-old children. Biol Psychiatry 70(11):1016–1023. doi:10.1016/j.biopsych.2011.06.017

    CAS  PubMed  Google Scholar 

  70. Weaver IC, Champagne FA, Brown SE, Dymov S, Sharma S, Meaney MJ, Szyf M (2005) Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neurosci Off J Socr Neurosci 25(47):11045–11054. doi:10.1523/JNEUROSCI.3652-05.2005

    CAS  Google Scholar 

  71. Weaver ICG, Meaney MJ, Szyf M (2006) Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proc Natl Acad Sci U S A 103(9):3480–3485. doi:10.1073/Pnas.0507526103

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Perroud N, Dayer A, Piguet C, Nallet A, Favre S, Malafosse A, Aubry JM (2013) Childhood maltreatment and methylation of the glucocorticoid receptor gene NR3C1 in bipolar disorder. Br J Psychiatry. doi:10.1192/bjp.bp.112.120055

    PubMed  Google Scholar 

  73. Tyrka AR, Price LH, Marsit C, Walters OC, Carpenter LL (2012) Childhood adversity and epigenetic modulation of the leukocyte glucocorticoid receptor: preliminary findings in healthy adults. PLoS One 7(1):e30148. doi:10.1371/journal.pone.0030148

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Yang BZ, Zhang H, Ge W, Weder N, Douglas-Palumberi H, Perepletchikova F, Gelernter J, Kaufman J (2013) Child abuse and epigenetic mechanisms of disease risk. Am J Prev Med 44(2):101–107. doi:10.1016/j.amepre.2012.10.012

    PubMed Central  PubMed  Google Scholar 

  75. McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonte B, Szyf M, Turecki G, Meaney MJ (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12(3):342–348. doi:10.1038/nn.2270

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Naumova OY, Lee M, Koposov R, Szyf M, Dozier M, Grigorenko EL (2012) Differential patterns of whole-genome DNA methylation in institutionalized children and children raised by their biological parents. Dev Psychopathol 24(1):143–155. doi:10.1017/S0954579411000605

    PubMed Central  PubMed  Google Scholar 

  77. Koenen KC, Uddin M (2010) FKBP5 polymorphisms modify the effects of childhood trauma. Neuropsychopharmacology 35(8):1623–1624. doi:10.1038/npp.2010.60

    PubMed Central  PubMed  Google Scholar 

  78. Klengel T, Mehta D, Anacker C, Rex-Haffner M, Pruessner JC, Pariante CM, Pace TW, Mercer KB, Mayberg HS, Bradley B, Nemeroff CB, Holsboer F, Heim CM, Ressler KJ, Rein T, Binder EB (2013) Allele-specific FKBP5 DNA demethylation mediates gene–childhood trauma interactions. Nat Neurosci 16(1):33–41. doi:10.1038/nn.3275

    CAS  PubMed  Google Scholar 

  79. Meaburn EL, Schalkwyk LC, Mill J (2010) Allele-specific methylation in the human genome: implications for genetic studies of complex disease. Epigenetics 5(7):578–582. doi:10.4161/epi.5.7.12960

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Collip D, Myin-Germeys I, Wichers M, Jacobs N, Derom C, Thiery E, Lataster T, Simons C, Delespaul P, Marcelis M, van Os J, van Winkel R (2013) FKBP5 as a possible moderator of the psychosis-inducing effects of childhood trauma. Br J Psychiatry 202(4):261–268. doi:10.1192/bjp.bp.112.115972

    PubMed  Google Scholar 

  81. Murgatroyd C, Patchev AV, Wu Y, Micale V, Bockmuhl Y, Fischer D, Holsboer F, Wotjak CT, Almeida OF, Spengler D (2009) Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci 12(12):1559–1566. doi:10.1038/nn.2436

    CAS  PubMed  Google Scholar 

  82. Selten JP, van der Ven E, Rutten BP, Cantor-Graae E (2013) The social defeat hypothesis of schizophrenia: an update. Schizophr Bull 39(6):1180–1186. doi:10.1093/schbul/sbt134

    PubMed  Google Scholar 

  83. Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9(4):519–525. doi:10.1038/nn1659

    CAS  PubMed  Google Scholar 

  84. Renthal W, Maze I, Krishnan V, Covington HE III, Xiao G, Kumar A, Russo SJ, Graham A, Tsankova N, Kippin TE, Kerstetter KA, Neve RL, Haggarty SJ, McKinsey TA, Bassel-Duby R, Olson EN, Nestler EJ (2007) Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 56(3):517–529. doi:10.1016/j.neuron.2007.09.032

    CAS  PubMed  Google Scholar 

  85. Krishnan V, Han MH, Graham DL, Berton O, Renthal W, Russo SJ, Laplant Q, Graham A, Lutter M, Lagace DC, Ghose S, Reister R, Tannous P, Green TA, Neve RL, Chakravarty S, Kumar A, Eisch AJ, Self DW, Lee FS, Tamminga CA, Cooper DC, Gershenfeld HK, Nestler EJ (2007) Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131(2):391–404. doi:10.1016/j.cell.2007.09.018

    CAS  PubMed  Google Scholar 

  86. Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ, Graham D, Tsankova NM, Bolanos CA, Rios M, Monteggia LM, Self DW, Nestler EJ (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311(5762):864–868. doi:10.1126/science.1120972

    CAS  PubMed  Google Scholar 

  87. LaPlant Q, Vialou V, Covington HE III, Dumitriu D, Feng J, Warren BL, Maze I, Dietz DM, Watts EL, Iniguez SD, Koo JW, Mouzon E, Renthal W, Hollis F, Wang H, Noonan MA, Ren Y, Eisch AJ, Bolanos CA, Kabbaj M, Xiao G, Neve RL, Hurd YL, Oosting RS, Fan G, Morrison JH, Nestler EJ (2010) Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat Neurosci 13(9):1137–1143. doi:10.1038/nn.2619

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Unternaehrer E, Luers P, Mill J, Dempster E, Meyer AH, Staehli S, Lieb R, Hellhammer DH, Meinlschmidt G (2012) Dynamic changes in DNA methylation of stress-associated genes (OXTR, BDNF) after acute psychosocial stress. Transl Psychiatry 2:e150. doi:10.1038/tp.2012.77

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Soliman A, O’Driscoll GA, Pruessner J, Holahan AL, Boileau I, Gagnon D, Dagher A (2008) Stress-induced dopamine release in humans at risk of psychosis: a [11C]raclopride PET study. Neuropsychopharmacology 33(8):2033–2041. doi:10.1038/sj.npp.1301597

    CAS  PubMed  Google Scholar 

  90. Mizrahi R, Addington J, Rusjan PM, Suridjan I, Ng A, Boileau I, Pruessner JC, Remington G, Houle S, Wilson AA (2012) Increased stress-induced dopamine release in psychosis. Biol Psychiatry 71(6):561–567. doi:10.1016/j.biopsych.2011.10.009

    CAS  PubMed  Google Scholar 

  91. Barnett JH, Werners U, Secher SM, Hill KE, Brazil R, Masson K, Pernet DE, Kirkbride JB, Murray GK, Bullmore ET, Jones PB (2007) Substance use in a population-based clinic sample of people with first-episode psychosis. Br J Psychiatry 190:515–520. doi:10.1192/bjp.bp.106.024448

    PubMed  Google Scholar 

  92. Arseneault L, Cannon M, Witton J, Murray RM (2004) Causal association between cannabis and psychosis: examination of the evidence. Br J Psychiatry 184:110–117

    PubMed  Google Scholar 

  93. Sekine Y, Iyo M, Ouchi Y, Matsunaga T, Tsukada H, Okada H, Yoshikawa E, Futatsubashi M, Takei N, Mori N (2001) Methamphetamine-related psychiatric symptoms and reduced brain dopamine transporters studied with PET. Am J Psychiatry 158(8):1206–1214

    CAS  PubMed  Google Scholar 

  94. Lehrmann E, Colantuoni C, Deep-Soboslay A, Becker KG, Lowe R, Huestis MA, Hyde TM, Kleinman JE, Freed WJ (2006) Transcriptional changes common to human cocaine, cannabis and phencyclidine abuse. PLoS One 1:e114. doi:10.1371/journal.pone.0000114

    PubMed Central  PubMed  Google Scholar 

  95. Numachi Y, Yoshida S, Yamashita M, Fujiyama K, Naka M, Matsuoka H, Sato M, Sora I (2004) Psychostimulant alters expression of DNA methyltransferase mRNA in the rat brain. Ann N Y Acad Sci 1025:102–109. doi:10.1196/annals.1316.013

    CAS  PubMed  Google Scholar 

  96. Kumar A, Choi KH, Renthal W, Tsankova NM, Theobald DE, Truong HT, Russo SJ, Laplant Q, Sasaki TS, Whistler KN, Neve RL, Self DW, Nestler EJ (2005) Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 48(2):303–314. doi:10.1016/j.neuron.2005.09.023

    CAS  PubMed  Google Scholar 

  97. van Os J, Bak M, Hanssen M, Bijl RV, de Graaf R, Verdoux H (2002) Cannabis use and psychosis: a longitudinal population-based study. Am J Epidemiol 156(4):319–327. doi:10.1093/Aje/Kwf043

    PubMed  Google Scholar 

  98. Khare M, Taylor AH, Konje JC, Bell SC (2006) Delta9-tetrahydrocannabinol inhibits cytotrophoblast cell proliferation and modulates gene transcription. Mol Hum Reprod 12(5):321–333. doi:10.1093/molehr/gal036

    CAS  PubMed  Google Scholar 

  99. van Winkel R, van Beveren NJ, Simons C (2011) AKT1 moderation of cannabis-induced cognitive alterations in psychotic disorder. Neuropsychopharmacology 36(12):2529–2537. doi:10.1038/npp.2011.141

    PubMed Central  PubMed  Google Scholar 

  100. van Winkel R (2011) Family-based analysis of genetic variation underlying psychosis-inducing effects of cannabis: sibling analysis and proband follow-up. Arch Gen Psychiatry 68(2):148–157. doi:10.1001/archgenpsychiatry.2010.152

    PubMed  Google Scholar 

  101. Franklin TB, Russig H, Weiss IC, Graff J, Linder N, Michalon A, Vizi S, Mansuy IM (2010) Epigenetic transmission of the impact of early stress across generations. Biol Psychiatry 68(5):408–415. doi:10.1016/j.biopsych.2010.05.036

    PubMed  Google Scholar 

  102. Dias BG, Ressler KJ (2014) Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat Neurosci 17(1):89–96. doi:10.1038/nn.3594

    CAS  PubMed  Google Scholar 

  103. van Os J, Rutten BP, Poulton R (2008) Gene–environment interactions in schizophrenia: review of epidemiological findings and future directions. Schizophr Bull 34(6):1066–1082. doi:10.1093/schbul/sbn117

    PubMed Central  PubMed  Google Scholar 

  104. Niwa M, Jaaro-Peled H, Tankou S, Seshadri S, Hikida T, Matsumoto Y, Cascella NG, Kano S, Ozaki N, Nabeshima T, Sawa A (2013) Adolescent stress-induced epigenetic control of dopaminergic neurons via glucocorticoids. Science 339(6117):335–339. doi:10.1126/science.1226931

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Davies MN, Volta M, Pidsley R, Lunnon K, Dixit A, Lovestone S, Coarfa C, Harris RA, Milosavljevic A, Troakes C, Al-Sarraj S, Dobson R, Schalkwyk LC, Mill J (2012) Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol 13(6):R43. doi:10.1186/gb-2012-13-6-r43

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Horvath S, Zhang Y, Langfelder P, Kahn RS, Boks MP, van Eijk K, van den Berg LH, Ophoff RA (2012) Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol 13(10):R97. doi:10.1186/gb-2012-13-10-r97

    CAS  PubMed  Google Scholar 

  107. Slieker RC, Bos SD, Goeman JJ, Bovee JV, Talens RP, van der Breggen R, Suchiman HE, Lameijer EW, Putter H, van den Akker EB, Zhang Y, Jukema JW, Slagboom PE, Meulenbelt I, Heijmans BT (2013) Identification and systematic annotation of tissue-specific differentially methylated regions using the Illumina 450 k array. Epigenetics Chromatin 6(1):26. doi:10.1186/1756-8935-6-26

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Mill J, Heijmans BT (2013) From promises to practical strategies in epigenetic epidemiology. Nat Rev Genet 14(8):585–594. doi:10.1038/nrg3405

    CAS  PubMed  Google Scholar 

  109. Dempster E, Viana J, Pidsley R, Mill J (2013) Epigenetic studies of schizophrenia: progress, predicaments, and promises for the future. Schizophr Bull 39(1):11–16. doi:10.1093/schbul/sbs139

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

JvO and BPFR have received funding from the European Community’s Seventh Framework Programme under Grant Agreement No. HEALTH-F2-2009-241909 (Project EU-GEI), and BPFR has received funding from the Netherlands Organisation for Scientific Research (NWO; VENI Award No. 916.11.086).

Conflict of interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart P. F. Rutten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pishva, E., Kenis, G., van den Hove, D. et al. The epigenome and postnatal environmental influences in psychotic disorders. Soc Psychiatry Psychiatr Epidemiol 49, 337–348 (2014). https://doi.org/10.1007/s00127-014-0831-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00127-014-0831-2

Keywords

Navigation