Skip to main content
Log in

New strategies in the treatment of coronary bifurcations

Neue Strategien bei der Behandlung von Läsionen in Koronarbifurkationen

  • Main topic/CME
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Despite major improvements in stent technology (i.e., drug-eluting stents, DES), treatment of coronary bifurcations is an ever occurring problem of the interventional cardiology. While stenting the main branch with provisional side branch stenting seems to be the prevailing approach, in the era of DES various two-stent techniques emerged (crush) or were re-introduced (V or simultaneous kissing stents, crush, T, culottes, etc.) to allow stenting in the side branch when needed. New techniques in imaging like optical coherence tomography help in better understanding bifurcation anatomy and, thus, have the potential to help us better treat this challenging subset of lesions. In addition, new dedicated bifurcation stents have been proposed in an attempt to overcome limitations associated with current approaches, and they showed promising results in early studies; however, the safety and the efficacy of these devices remain to be seen in the ongoing and upcoming trials. This review focuses on the current approaches and the development of new techniques employed for the treatment of bifurcation disease.

Zusammenfassung

Trotz wesentlicher Verbesserungen in der Stenttechnologie (i. S. medikamentenbeschichter Stents) ist die Therapie von Stenosen in Koronarbifurkationen ein immer wiederkehrendes Problem in der interventionellen Kardiologie. Während die Stenteinlage in den Hauptast mit provisorischer Stenteinlage in den Seitenast der vorherrschende Ansatz zu sein scheint, wurden im Zeitalter beschichteter Stents verschiedene 2-Stent-Techniken entwickelt (Crush-Technik) oder wiedereingeführt („V-“ oder simultane Kissing-Stent-Technik, Crush-, T-, Culotte-Technik usw.), um ggf. die Stenteinlage in den Seitenast zu ermöglichen. Neue bildgebende Verfahren wie die optische Kohärenztomographie tragen zum besseren Verständnis der Bifurkationsanatomie bei und bieten das Potenzial, zu einer besseren Therapie dieser anspruchsvollen Untergruppe von Läsionen zu verhelfen. Darüber hinaus wurden neue geeignete Bifurkationsstents vorgestellt, um die Grenzen der derzeitigen Ansätze zu überwinden, und sie zeitigten in den anfänglichen Studien vielversprechende Ergebnisse; allerdings müssen sich Sicherheit und Wirksamkeit dieser Stents in laufenden und zukünftigen Studien noch erweisen. Die vorliegende Übersicht richtet den Fokus auf die derzeitigen Ansätze und die Entwicklung neuer Verfahren zur Therapie von Bifurkationsläsionen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hermiller JB (2010) Contemporary bifurcation treatment strategies: the role of currently available slotted tube stents. Rev Cardiovasc Med 11(Suppl 1):S17–S26

    PubMed  Google Scholar 

  2. Iakovou I, Colombo A (2005) Two-stent techniques for the treatment of coronary bifurcations with drug-eluting stents. Hellenic J Cardiol 46:188–198

    PubMed  Google Scholar 

  3. Latib A, Colombo A (2008) Bifurcation disease: what do we know, what should we do? JACC Cardiovasc Interv 1:218–226

    Article  PubMed  Google Scholar 

  4. Sharma SK, Sweeny J, Kini AS (2010) Coronary bifurcation lesions: a current update. Cardiol Clin 28:55–70

    Article  PubMed  Google Scholar 

  5. Stankovic G, Darremont O, Ferenc M et al (2009) Percutaneous coronary intervention for bifurcation lesions: 2008 consensus document from the fourth meeting of the European Bifurcation Club. EuroIntervention 5:39–49

    Article  PubMed  Google Scholar 

  6. Zairis MN, Ambrose JA, Manousakis SJ et al (2002) The impact of plasma levels of C-reactive protein, lipoprotein (a) and homocysteine on the long-term prognosis after successful coronary stenting: The Global Evaluation of New Events and Restenosis After Stent Implantation Study. J Am Coll Cardiol 40:1375–1382

    Article  PubMed  CAS  Google Scholar 

  7. Iakovou I, Mehran R, Dangas G (2006) Thrombosis after implantation of drug-eluting stents. Hellenic J Cardiol 47:31–38

    PubMed  Google Scholar 

  8. Iakovou I, Schmidt T, Bonizzoni E et al (2005) Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. JAMA 293:2126–2130

    Article  PubMed  CAS  Google Scholar 

  9. Hildick-Smith D, Lassen JF, Albiero R et al (2010) Consensus from the 5th European Bifurcation Club meeting. EuroIntervention 6:34–38

    Article  PubMed  Google Scholar 

  10. Finet G, Gilard M, Perrenot B et al (2008) Fractal geometry of arterial coronary bifurcations: a quantitative coronary angiography and intravascular ultrasound analysis. EuroIntervention 3:490–498

    Article  PubMed  Google Scholar 

  11. Murray CD (1926) The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc Natl Acad Sci U S A 12:207

    Article  PubMed  CAS  Google Scholar 

  12. Kimura BJ (1996) Atheroma morphology and distribution in proximal left anterior descending coronary artery: in vivo observations. J Am Coll Cardiol 27:825

    Article  PubMed  CAS  Google Scholar 

  13. Rodriguez-Granillo GA, García-García HM, Wentzel J et al (2006) Plaque Composition and its Relationship With Acknowledged Shear Stress Patterns in Coronary Arteries. J Am Coll Cardiol 47:884–885

    Article  PubMed  Google Scholar 

  14. Asakura T, Karino T (1990) Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ Res 66:1045–1066

    PubMed  CAS  Google Scholar 

  15. Cheng C, Tempel D, Haperen R van et al (2006) Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 113:2744–2753

    Article  PubMed  Google Scholar 

  16. Krams R, Wentzel JJ, Oomen JAF et al (1997) Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo: combining 3D reconstruction from angiography and IVUS (ANGUS) with computational fluid dynamics. Arterioscler Thromb Vasc Biol 17:2061–2065

    PubMed  CAS  Google Scholar 

  17. Stone PH, Coskun AU, Kinlay S et al (2003) Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: in vivo 6-month follow-up study. Circulation 108:438–444

    Article  PubMed  Google Scholar 

  18. Nakazawa G, Yazdani SK, Finn AV et al (2010) Pathological findings at bifurcation lesions: the impact of flow distribution on atherosclerosis and arterial healing after stent implantation. J Am Coll Cardiol 55:1679–1687

    Article  PubMed  Google Scholar 

  19. Cheruvu PK, Finn AV, Gardner C et al (2007) Frequency and distribution of thin-cap fibroatheroma and ruptured plaques in human coronary arteries: a pathologic study. J Am Coll Cardiol 50:940–949

    Article  PubMed  Google Scholar 

  20. Hong MK, Mintz GS, Lee CW (2004) Comparison of coronary plaque rupture between stable angina and acute myocardial infarction: a three-vessel intravascular ultrasound study in 235 patients. ACC Curr J Rev 13:38–38

    Article  Google Scholar 

  21. Hong MK, Mintz GS, Lee CW et al (2007) Plaque ruptures in stable angina pectoris compared with acute coronary syndrome. Int J Cardiol 114:78–82

    Article  PubMed  Google Scholar 

  22. Tanaka A, Shimada K, Namba M et al (2008) Relationship between longitudinal morphology of ruptured plaques and TIMI flow grade in acute coronary syndrome: a three-dimensional intravascular ultrasound imaging study. Eur Heart J 29:38–44

    Article  PubMed  Google Scholar 

  23. Fujii K, Kawasaki D, Masutani M et al (2010) OCT assessment of thin-cap fibroatheroma distribution in native coronary arteries. JACC Cardiovasc Imaging 3:168–175

    Article  PubMed  Google Scholar 

  24. Gonzalo N, Garcia-Garcia HM, Regar E et al (2009) In vivo assessment of high-risk coronary plaques at bifurcations with combined intravascular ultrasound and optical coherence tomography. JACC Cardiovascular Imaging 2:473–482

    Article  PubMed  Google Scholar 

  25. Iakovou I, Ge L, Colombo A (2005) Contemporary stent treatment of coronary bifurcations. J Am Coll Cardiol 46:1446–1455

    Article  PubMed  Google Scholar 

  26. Louvard Y, Lefevre T, Morice MC (2004) Percutaneous coronary intervention for bifurcation coronary disease. Heart 90:713–722

    Article  PubMed  Google Scholar 

  27. Movahed MR, Kern K, Thai H et al (2008) Coronary artery bifurcation lesions: a review and update on classification and interventional techniques. Cardiovasc Revasc Med 9:263–268

    Article  PubMed  Google Scholar 

  28. Louvard Y, Thomas M, Dzavik V et al (2008) Classification of coronary artery bifurcation lesions and treatments: time for a consensus! Catheter Cardiovasc Interv 71:175–183

    Article  PubMed  Google Scholar 

  29. Steigen TK, Maeng M, Wiseth R et al (2006) Randomized study on simple versus complex stenting of coronary artery bifurcation lesions: the Nordic bifurcation study. Circulation 114:1955–1961

    Article  PubMed  Google Scholar 

  30. Jensen JS, Galloe A, Lassen JF et al (2008) Safety in simple versus complex stenting of coronary artery bifurcation lesions. The Nordic bifurcation study 14-month follow-up results. EuroIntervention 4:229–233

    Article  PubMed  Google Scholar 

  31. Ferenc M, Gick M, Kienzle RP et al (2008) Randomized trial on routine vs. provisional T-stenting in the treatment of de novo coronary bifurcation lesions. Eur Heart J 29:2859–2867

    Article  PubMed  Google Scholar 

  32. Colombo A, Bramucci E, Sacca S et al (2009) Randomized study of the crush technique versus provisional side-branch stenting in true coronary bifurcations: the CACTUS (Coronary Bifurcations: Application of the Crushing Technique Using Sirolimus-Eluting Stents) study. Circulation 119:71–78

    Article  PubMed  Google Scholar 

  33. Hildick-Smith D, Belder AJ de, Cooter N et al (2011) Randomized trial of simple versus complex drug-eluting stenting for bifurcation lesions: the British Bifurcation Coronary Study: old, new, and evolving strategies. Circulation 121:1235–1243

    Article  Google Scholar 

  34. Melikian N, Di Mario C (2003) Treatment of bifurcation coronary lesions: a review of current techniques and outcome. J Interv Cardiol 16:507–513

    Article  PubMed  Google Scholar 

  35. Koo BK, Waseda K, Kang HJ et al (2010) Anatomic and functional evaluation of bifurcation lesions undergoing percutaneous coronary intervention. Circ Cardiovasc Interv 3:113–119

    Article  PubMed  Google Scholar 

  36. Bekdash IL, Hodgson JM (2010) The side branch ostium: understanding the Achilles heel of treating bifurcation coronary disease. Rev Cardiovasc Med 11(Suppl 1):S38–S42

    PubMed  Google Scholar 

  37. Stankovic G, Darremont O, Ferenc M et al (2009) Percutaneous coronary intervention for bifurcation lesions: 2008 consensus document from the fourth meeting of the European Bifurcation Club. EuroIntervention 5:39–49

    Article  PubMed  Google Scholar 

  38. Murasato Y, Hikichi Y, Nakamura S et al (2010) Recent perspective on coronary bifurcation intervention: statement of the “Bifurcation Club in KOKURA”. J Interv Cardiol 23:295–304

    Article  PubMed  Google Scholar 

  39. Guerin P, Pilet P, Finet G et al (2010) Drug-eluting stents in bifurcations: bench study of strut deformation and coating lesions. Circ Cardiovasc Interv 3:120–126

    Article  PubMed  Google Scholar 

  40. Murasato Y, Hikichi Y, Horiuchi M (2009) Examination of stent deformation and gap formation after complex stenting of left main coronary artery bifurcations using microfocus computed tomography. J Interv Cardiol 22:135–144

    Article  PubMed  Google Scholar 

  41. Gastaldi D, Morlacchi S, Nichetti R et al (2010) Modelling of the provisional side-branch stenting approach for the treatment of atherosclerotic coronary bifurcations: effects of stent positioning. Biomech Model Mechanobiol 9:551–561

    Article  PubMed  Google Scholar 

  42. Ormiston JA (1999) Stent deformation following simulated side-branch dilatation: a comparison of five stent designs. Catheter Cardiovasc Interv 47:258

    Article  PubMed  CAS  Google Scholar 

  43. Lefèvre T, Louvard Y, Morice MC et al (2000) Stenting of bifurcation lesions: classification, treatments, and results. Catheter Cardiovasc Interv 49:274–283

    Article  PubMed  Google Scholar 

  44. Ormiston JA, Webster MWI, El Jack S et al (2006) Drug-eluting stents for coronary bifurcations: bench testing of provisional side-branch strategies. Catheter Cardiovasc Interv 67:49–55

    Article  PubMed  Google Scholar 

  45. Mortier P (2010) A novel simulation strategy for stent insertion and deployment in curved coronary bifurcations: comparison of three drug-eluting stents. Ann Biomed Eng 38:88

    Article  PubMed  Google Scholar 

  46. Foin N, Secco GG, Ghilencea L et al (2011) Final proximal post-dilatation after KB is necessary to optimize stent deployment in bifurcations. Eurointervention (in press)

  47. Dzavik V, Kharbanda R, Ivanov J et al (2006) Predictors of long-term outcome after crush stenting of coronary bifurcation lesions: importance of the bifurcation angle. Am Heart J 152:762–769

    Article  PubMed  Google Scholar 

  48. Ormiston JA, Currie E, Webster MW et al (2004) Drug-eluting stents for coronary bifurcations: insights into the crush technique. Catheter Cardiovasc Interv 63:332–336

    Article  PubMed  Google Scholar 

  49. Ormiston JA, Webster MW, Webber B et al (2008) The “crush” technique for coronary artery bifurcation stenting: insights from micro-computed tomographic imaging of bench deployments. JACC Cardiovasc Interv 1:351–357

    Article  PubMed  Google Scholar 

  50. Girasis C, Schuurbiers JC, Onuma Y et al (2010) Novel bifurcation phantoms for validation of quantitative coronary angiography algorithms. Catheter Cardiovasc Interv (epub ahead of print)

  51. Williams AR, Koo BK, Gundert TJ et al (2010) Local hemodynamic changes caused by main branch stent implantation and subsequent virtual side branch balloon angioplasty in a representative coronary bifurcation. J Appl Physiol 109:532–540

    Article  PubMed  Google Scholar 

  52. Mortier P, Van Loo D, De Beule M et al (2008) Comparison of drug-eluting stent cell size using micro-CT: important data for bifurcation stent selection. EuroIntervention 4:391–396

    Article  PubMed  Google Scholar 

  53. Melikian N, Airoldi F, Di Mario C (2004) Coronary bifurcation stenting. Current techniques, outcome and possible future developments. Minerva Cardioangiol 52:365–378

    PubMed  CAS  Google Scholar 

  54. Erglis A, Kumsars I, Niemela M et al (2009) Randomized comparison of coronary bifurcation stenting with the crush versus the culotte technique using sirolimus eluting stents: the Nordic stent technique study. Circ Cardiovasc Interv 2:27–34

    Article  PubMed  Google Scholar 

  55. Movahed MR (2010) Studies involving coronary bifurcation interventions should utilize the most comprehensive and technically relevant Movahed coronary bifurcation classification for better communication and accuracy. Am J Cardiol 105:1204–1205

    Article  PubMed  Google Scholar 

  56. Movahed MR, Stinis CT (2006) A new proposed simplified classification of coronary artery bifurcation lesions and bifurcation interventional techniques. J Invasive Cardiol 18:199–204

    PubMed  Google Scholar 

  57. Sharma SK, Kini AS (2006) Coronary bifurcation lesions. Cardiol Clin 24:233–246 vi

    Article  PubMed  Google Scholar 

  58. Farb A (2003) Pathological mechanisms of fatal late coronary stent thrombosis in humans. Circulation 108:1701

    Article  PubMed  Google Scholar 

  59. Joner M (2006) Pathology of drug-eluting stents in humans delayed healing and late thrombotic risk. J Am Coll Cardiol 48:193

    Article  PubMed  Google Scholar 

  60. Moore P, Barlis P, Spiro J et al (2009) A randomized optical coherence tomography study of coronary stent strut coverage and luminal protrusion with rapamycin-eluting stents. J Am Coll Cardiol Intv 2:437–444

    Google Scholar 

  61. Cook S, Wenaweser P, Togni M et al (2007) Incomplete stent apposition and very late stent thrombosis after drug-eluting stent implantation. Circulation 115:2426–2434

    Article  PubMed  CAS  Google Scholar 

  62. Ozaki Y, Okumura M, Ismail TF et al (2010) The fate of incomplete stent apposition with drug-eluting stents: an optical coherence tomography-based natural history study. Eur Heart J 31:1470–1476

    Article  PubMed  Google Scholar 

  63. Hassan AKM, Bergheanu SC, Stijnen Tet al (2010) Late stent malapposition risk is higher after drug-eluting stent compared with bare-metal stent implantation and associates with late stent thrombosis. Eur Heart J 31:1172–1180

    Article  PubMed  CAS  Google Scholar 

  64. Cook S, Ladich E, Nakazawa G et al (2009) Correlation of intravascular ultrasound findings with histopathological analysis of thrombus aspirates in patients with very late drug-eluting stent thrombosis. Circulation 120:391–399

    Article  PubMed  Google Scholar 

  65. Ribamar Costa JJ de, Mintz GS, Carlier SG et al (2007) Intravascular ultrasound assessment of drug-eluting stent expansion. Am Heart J 153:297–303

    Article  Google Scholar 

  66. Tyczynski P, Ferrante G, Moreno-Ambroj C et al (2010) Simple versus complex approaches to treating coronary bifurcation lesion: direct assessment of stent strut apposition by optical coherence tomography. Rev Esp Cardiol 63:904–914

    Article  PubMed  Google Scholar 

  67. Tyczynski P, Ferrante G, Kukreja N et al (2009) Optical coherence tomography assessment of a new dedicated bifurcation stent. EuroIntervention 5:544–551

    Article  PubMed  Google Scholar 

  68. Cortese B, Limbruno U (2011) Coronary bifurcation lesions: innovative approaches and the future of bifurcation devices. Future Cardiol 6:221–230

    Article  Google Scholar 

  69. Dibie A, Chevalier B, Guyon P et al (2008) First-in-human feasibility and safety study of a true bifurcated stent for the treatment of bifurcation coronary artery lesions (DBS stent): six month angiographic results and five year clinical follow-up. EuroIntervention 3:558–565

    Article  PubMed  Google Scholar 

  70. Grube E, Buellesfeld L, Neumann FJ et al (2007) Six-month clinical and angiographic results of a dedicated drug-eluting stent for the treatment of coronary bifurcation narrowings. Am J Cardiol 99:1691–1697

    Article  PubMed  CAS  Google Scholar 

  71. Kornowski R (2009) The need for a dedicated bifurcation stenting system. Catheter Cardiovasc Interv 73:641–642

    Article  PubMed  Google Scholar 

  72. Moore JE Jr, Timmins LH, Ladisa JF Jr (2010) Coronary artery bifurcation biomechanics and implications for interventional strategies. Catheter Cardiovasc Interv 76:836–843

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Di Mario MD, PhD, FESC, FACC, FRCP.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iakovou, I., Foin, N., Andreou, A. et al. New strategies in the treatment of coronary bifurcations. Herz 36, 198–213 (2011). https://doi.org/10.1007/s00059-011-3459-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-011-3459-y

Keywords

Schlüsselwörter

Navigation