Skip to main content
Log in

Epigenetic modifications working in the decidualization and endometrial receptivity

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Decidualization is a critical event for the blastocyst implantation, placental development and fetal growth and the normal term. In mice, the embryo implantation to the uterine epithelial would trigger the endometrial stromal cells to differentiate into decidual stromal cells. However, decidualization in women takes place from the secretory phase of each menstrual cycle and continues to early pregnancy if there is conceptus. Deficient decidualization is often associated with pregnancy specific complications and reproductive disorders. Dramatic changes occur in the gene expression profiles during decidualization, which is coordinately regulated by steroid hormones, growth factors, and molecular and epigenetic mechanisms. Recently, emerging evidences showed that epigenetic modifications, mainly including DNA methylation, histone modification, and non-coding RNAs, play an important role in the decidualization process via affecting the target genes’ expression. In this review, we will focus on the epigenetic modifications in decidualization and open novel avenues to predict and treat the pregnancy complications caused by abnormal decidualization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Gellersen B, Brosens JJ (2014) Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr Rev 35(6):851–905

    Article  CAS  PubMed  Google Scholar 

  2. Norwitz ER, Bonney EA, Snegovskikh VV, Williams MA, Phillippe M, Park JS, Abrahams VM (2015) Molecular regulation of parturition: the role of the decidual clock. Cold Spring Harb Perspect Med 5(11):a023143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Park Y, Nnamani MC, Maziarz J, Wagner GP (2016) Cis-regulatory evolution of forkhead Box O1 (FOXO1), a terminal selector gene for decidual stromal cell identity. Mol Biol Evol 33(12):3161–3169

    Article  CAS  PubMed  Google Scholar 

  4. Estella C, Herrer I, Atkinson SP, Quinonero A, Martinez S, Pellicer A, Simon C (2012) Inhibition of histone deacetylase activity in human endometrial stromal cells promotes extracellular matrix remodelling and limits embryo invasion. PLoS One 7(1):e30508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Russell P, Sacks G, Tremellen K, Gee A (2013) The distribution of immune cells and macrophages in the endometrium of women with recurrent reproductive failure. III: further observations and reference ranges. Pathology 45(4):393–401

    Article  CAS  PubMed  Google Scholar 

  6. King A (2000) Uterine leukocytes and decidualization. Hum Reprod Update 6(1):28–36

    Article  CAS  PubMed  Google Scholar 

  7. Rieger L, Honig A, Sutterlin M, Kapp M, Dietl J, Ruck P, Kammerer U (2004) Antigen-presenting cells in human endometrium during the menstrual cycle compared to early pregnancy. J Soc Gynecol Investig 11(7):488–493

    Article  CAS  PubMed  Google Scholar 

  8. Kajihara T, Tanaka K, Oguro T, Tochigi H, Prechapanich J, Uchino S, Itakura A, Sucurovic S, Murakami K, Brosens JJ, Ishihara O (2014) Androgens modulate the morphological characteristics of human endometrial stromal cells decidualized in vitro. Reprod Sci 21(3):372–380

    Article  PubMed  CAS  Google Scholar 

  9. Cornillie FJ, Lauweryns JM, Brosens IA (1985) Normal human endometrium. An ultrastructural survey. Gynecol Obstet Invest 20(3):113–129

    Article  CAS  PubMed  Google Scholar 

  10. Golander A, Hurley T, Barrett J, Hizi A, Handwerger S (1978) Prolactin synthesis by human chorion-decidual tissue: a possible source of prolactin in the amniotic fluid. Science 202(4365):311–313

    Article  CAS  PubMed  Google Scholar 

  11. Riddick DH, Luciano AA, Kusmik WF, Maslar IA (1978) De novo synthesis of prolactin by human decidua. Life Sci 23(19):1913–1921

    Article  CAS  PubMed  Google Scholar 

  12. Taii S, Ihara Y, Mori T (1984) Identification of the mRNA coding for prolactin in the human decidua. Biochem Biophys Res Commun 124(2):530–537

    Article  CAS  PubMed  Google Scholar 

  13. Clements J, Whitfeld P, Cooke N, Healy D, Matheson B, Shine J, Funder J (1983) Expression of the prolactin gene in human decidua-chorion. Endocrinology 112(3):1133–1134

    Article  CAS  PubMed  Google Scholar 

  14. Maslar IA, Riddick DH (1979) Prolactin production by human endometrium during the normal menstrual cycle. Am J Obstet Gynecol 135(6):751–754

    Article  CAS  PubMed  Google Scholar 

  15. Daly DC, Maslar IA, Riddick DH (1983) Prolactin production during in vitro decidualization of proliferative endometrium. Am J Obstet Gynecol 145(6):672–678

    Article  CAS  PubMed  Google Scholar 

  16. Kletzky OA, Rossman F, Bertolli SI, Platt LD, Mishell DR Jr (1985) Dynamics of human chorionic gonadotropin, prolactin, and growth hormone in serum and amniotic fluid throughout normal human pregnancy. Am J Obstet Gynecol 151(7):878–884

    Article  CAS  PubMed  Google Scholar 

  17. Ben-Jonathan N, Mershon JL, Allen DL, Steinmetz RW (1996) Extrapituitary prolactin: distribution, regulation, functions, and clinical aspects. Endocr Rev 17(6):639–669

    CAS  PubMed  Google Scholar 

  18. Goffin V, Binart N, Touraine P, Kelly PA (2002) Prolactin: the new biology of an old hormone. Annu Rev Physiol 64:47–67

    Article  CAS  PubMed  Google Scholar 

  19. Jabbour HN, Critchley HO, Yu-Lee LY, Boddy SC (1999) Localization of interferon regulatory factor-1 (IRF-1) in nonpregnant human endometrium: expression of IRF-1 is up-regulated by prolactin during the secretory phase of the menstrual cycle. J Clin Endocrinol Metab 84(11):4260–4265

    Article  CAS  PubMed  Google Scholar 

  20. Shao L, Hou W, Scharping NE, Vendetti FP, Srivastava R, Roy CN, Menk AV, Wang Y, Chauvin JM, Karukonda P, Thorne SH, Hornung V, Zarour HM, Bakkenist CJ, Delgoffe GM, Sarkar SN (2019) IRF1 inhibits antitumor immunity through the upregulation of PD-L1 in the tumor cell. Cancer Immunol Res 7(8):1258–1266

    Article  PubMed  Google Scholar 

  21. Yu-Lee LY (1997) Molecular actions of prolactin in the immune system. Proc Soc Exp Biol Med 215(1):35–52

    Article  CAS  PubMed  Google Scholar 

  22. Maaskant RA, Bogic LV, Gilger S, Kelly PA, Bryant-Greenwood GD (1996) The human prolactin receptor in the fetal membranes, decidua, and placenta. J Clin Endocrinol Metab 81(1):396–405

    CAS  PubMed  Google Scholar 

  23. Stefanoska I, Jovanovic Krivokuca M, Vasilijic S, Cujic D, Vicovac L (2013) Prolactin stimulates cell migration and invasion by human trophoblast in vitro. Placenta 34(9):775–783

    Article  CAS  PubMed  Google Scholar 

  24. Corbacho AM, Martinez De La Escalera G, Clapp C (2002) Roles of prolactin and related members of the prolactin/growth hormone/placental lactogen family in angiogenesis. J Endocrinol 173(2):219–238

    Article  CAS  PubMed  Google Scholar 

  25. Jabbour HN, Critchley HO (2001) Potential roles of decidual prolactin in early pregnancy. Reproduction 121(2):197–205

    Article  CAS  PubMed  Google Scholar 

  26. Reese J, Binart N, Brown N, Ma WG, Paria BC, Das SK, Kelly PA, Dey SK (2000) Implantation and decidualization defects in prolactin receptor (PRLR)-deficient mice are mediated by ovarian but not uterine PRLR. Endocrinology 141(5):1872–1881

    Article  CAS  PubMed  Google Scholar 

  27. Bao L, Tessier C, Prigent-Tessier A, Li F, Buzzio OL, Callegari EA, Horseman ND, Gibori G (2007) Decidual prolactin silences the expression of genes detrimental to pregnancy. Endocrinology 148(5):2326–2334

    Article  CAS  PubMed  Google Scholar 

  28. Rutanen EM, Koistinen R, Wahlstrom T, Bohn H, Ranta T, Seppala M (1985) Synthesis of placental protein 12 by human decidua. Endocrinology 116(4):1304–1309

    Article  CAS  PubMed  Google Scholar 

  29. Carter AM, Hills F, O’Gorman DB, Roberts CT, Sooranna SR, Watson CS, Westwood M (2004) The insulin-like growth factor system in mammalian pregnancy—a workshop report. Placenta 25(Suppl A):S53–S56

    Article  PubMed  Google Scholar 

  30. Giudice LC (2002) Maternal-fetal conflict—lessons from a transgene. J Clin Invest 110(3):307–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Salker MS, Nautiyal J, Steel JH, Webster Z, Sucurovic S, Nicou M, Singh Y, Lucas ES, Murakami K, Chan YW, James S, Abdallah Y, Christian M, Croy BA, Mulac-Jericevic B, Quenby S, Brosens JJ (2012) Disordered IL-33/ST2 activation in decidualizing stromal cells prolongs uterine receptivity in women with recurrent pregnancy loss. PLoS One 7(12):e52252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Logan PC, Ponnampalam AP, Rahnama F, Lobie PE, Mitchell MD (2010) The effect of DNA methylation inhibitor 5-Aza-2′-deoxycytidine on human endometrial stromal cells. Hum Reprod 25(11):2859–2869

    Article  CAS  PubMed  Google Scholar 

  33. Zelenko Z, Aghajanova L, Irwin JC, Giudice LC (2012) Nuclear receptor, coregulator signaling, and chromatin remodeling pathways suggest involvement of the epigenome in the steroid hormone response of endometrium and abnormalities in endometriosis. Reprod Sci 19(2):152–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Munro SK, Farquhar CM, Mitchell MD, Ponnampalam AP (2010) Epigenetic regulation of endometrium during the menstrual cycle. Mol Hum Reprod 16(5):297–310

    Article  CAS  PubMed  Google Scholar 

  35. Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3(9):662–673

    Article  CAS  PubMed  Google Scholar 

  36. Gao F, Ma X, Rusie A, Hemingway J, Ostmann AB, Chung D, Das SK (2012) Epigenetic changes through DNA methylation contribute to uterine stromal cell decidualization. Endocrinology 153(12):6078–6090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grimaldi G, Christian M, Quenby S, Brosens JJ (2012) Expression of epigenetic effectors in decidualizing human endometrial stromal cells. Mol Hum Reprod 18(9):451–458

    Article  CAS  PubMed  Google Scholar 

  38. Nelissen EC, van Montfoort AP, Dumoulin JC, Evers JL (2011) Epigenetics and the placenta. Hum Reprod Update 17(3):397–417

    Article  CAS  PubMed  Google Scholar 

  39. Loke H, Rainczuk K, Dimitriadis E (2019) MicroRNA biogenesis machinery is dysregulated in the endometrium of infertile women suggesting a role in receptivity and infertility. J Histochem Cytochem 67(8):589–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11(3):204–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69(6):915–926

    Article  CAS  PubMed  Google Scholar 

  42. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257

    Article  CAS  PubMed  Google Scholar 

  43. Ding YB, He JL, Liu XQ, Chen XM, Long CL, Wang YX (2012) Expression of DNA methyltransferases in the mouse uterus during early pregnancy and susceptibility to dietary folate deficiency. Reproduction 144(1):91–100

    Article  CAS  PubMed  Google Scholar 

  44. Ding YB, Long CL, Liu XQ, Chen XM, Guo LR, Xia YY, He JL, Wang YX (2012) 5-Aza-2′-deoxycytidine leads to reduced embryo implantation and reduced expression of DNA methyltransferases and essential endometrial genes. PLoS One 7(9):e45364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rahnama F, Thompson B, Steiner M, Shafiei F, Lobie PE, Mitchell MD (2009) Epigenetic regulation of E-cadherin controls endometrial receptivity. Endocrinology 150(3):1466–1472

    Article  CAS  PubMed  Google Scholar 

  46. Logan PC, Ponnampalam AP, Steiner M, Mitchell MD (2013) Effect of cyclic AMP and estrogen/progesterone on the transcription of DNA methyltransferases during the decidualization of human endometrial stromal cells. Mol Hum Reprod 19(5):302–312

    Article  CAS  PubMed  Google Scholar 

  47. Yamagata Y, Asada H, Tamura I, Lee L, Maekawa R, Taniguchi K, Taketani T, Matsuoka A, Tamura H, Sugino N (2009) DNA methyltransferase expression in the human endometrium: down-regulation by progesterone and estrogen. Hum Reprod 24(5):1126–1132

    Article  CAS  PubMed  Google Scholar 

  48. Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer 11(10):726–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Alam H, Gu B, Lee MG (2015) Histone methylation modifiers in cellular signaling pathways. Cell Mol Life Sci 72(23):4577–4592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jin Y, Huo B, Fu X, Hao T, Zhang Y, Guo Y, Hu X (2017) LSD1 collaborates with EZH2 to regulate expression of interferon-stimulated genes. Biomed Pharmacother 88:728–737

    Article  CAS  PubMed  Google Scholar 

  51. Grimaldi G, Christian M, Steel JH, Henriet P, Poutanen M, Brosens JJ (2011) Down-regulation of the histone methyltransferase EZH2 contributes to the epigenetic programming of decidualizing human endometrial stromal cells. Mol Endocrinol 25(11):1892–1903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sakai N, Maruyama T, Sakurai R, Masuda H, Yamamoto Y, Shimizu A, Kishi I, Asada H, Yamagoe S, Yoshimura Y (2003) Involvement of histone acetylation in ovarian steroid-induced decidualization of human endometrial stromal cells. J Biol Chem 278(19):16675–16682

    Article  CAS  PubMed  Google Scholar 

  53. Gonzalez-Ramirez I, Soto-Reyes E, Sanchez-Perez Y, Herrera LA, Garcia-Cuellar C (2014) Histones and long non-coding RNAs: the new insights of epigenetic deregulation involved in oral cancer. Oral Oncol 50(8):691–695

    Article  CAS  PubMed  Google Scholar 

  54. Nancy P, Siewiera J, Rizzuto G, Tagliani E, Osokine I, Manandhar P, Dolgalev I, Clementi C, Tsirigos A, Erlebacher A (2018) H3K27me3 dynamics dictate evolving uterine states in pregnancy and parturition. J Clin Invest 128(1):233–247

    Article  PubMed  Google Scholar 

  55. Katoh N, Kuroda K, Tomikawa J, Ogata-Kawata H, Ozaki R, Ochiai A, Kitade M, Takeda S, Nakabayashi K, Hata K (2018) Reciprocal changes of H3K27ac and H3K27me3 at the promoter regions of the critical genes for endometrial decidualization. Epigenomics 10(9):1243–1257

    Article  CAS  PubMed  Google Scholar 

  56. Tamura I, Jozaki K, Sato S, Shirafuta Y, Shinagawa M, Maekawa R, Taketani T, Asada H, Tamura H, Sugino N (2018) The distal upstream region of insulin-like growth factor-binding protein-1 enhances its expression in endometrial stromal cells during decidualization. J Biol Chem 293(14):5270–5280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tamura I, Asada H, Maekawa R, Tanabe M, Lee L, Taketani T, Yamagata Y, Tamura H, Sugino N (2012) Induction of IGFBP-1 expression by cAMP is associated with histone acetylation status of the promoter region in human endometrial stromal cells. Endocrinology 153(11):5612–5621

    Article  CAS  PubMed  Google Scholar 

  58. Lucas ES, Dyer NP, Murakami K, Lee YH, Chan YW, Grimaldi G, Muter J, Brighton PJ, Moore JD, Patel G, Chan JK, Takeda S, Lam EW, Quenby S, Ott S, Brosens JJ (2016) Loss of endometrial plasticity in recurrent pregnancy loss. Stem Cells 34(2):346–356

    Article  CAS  PubMed  Google Scholar 

  59. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carninci P, Brown JB, Lipovich L, Gonzalez JM, Thomas M, Davis CA, Shiekhattar R, Gingeras TR, Hubbard TJ, Notredame C, Harrow J, Guigo R (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Housman G, Ulitsky I (2016) Methods for distinguishing between protein-coding and long noncoding RNAs and the elusive biological purpose of translation of long noncoding RNAs. Biochim Biophys Acta 1859 1:31–40

    Google Scholar 

  61. Mattick JS, Rinn JL (2015) Discovery and annotation of long noncoding RNAs. Nat Struct Mol Biol 22(1):5–7

    Article  CAS  PubMed  Google Scholar 

  62. Pauli A, Valen E, Lin MF, Garber M, Vastenhouw NL, Levin JZ, Fan L, Sandelin A, Rinn JL, Regev A, Schier AF (2012) Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res 22(3):577–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Klinge CM (2018) Non-coding RNAs: long non-coding RNAs and microRNAs in endocrine-related cancers. Endocr Relat Cancer 25(4):R259–R282

    Article  CAS  PubMed  Google Scholar 

  64. Chen YG, Satpathy AT, Chang HY (2017) Gene regulation in the immune system by long noncoding RNAs. Nat Immunol 18(9):962–972

    Article  CAS  PubMed  Google Scholar 

  65. Geisler S, Coller J (2013) RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol 14(11):699–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bouckenheimer J, Assou S, Riquier S, Hou C, Philippe N, Sansac C, Lavabre-Bertrand T, Commes T, Lemaitre JM, Boureux A, De Vos J (2016) Long non-coding RNAs in human early embryonic development and their potential in ART. Hum Reprod Update 23(1):19–40

    Article  PubMed  CAS  Google Scholar 

  67. Liang XH, Deng WB, Liu YF, Liang YX, Fan ZM, Gu XW, Liu JL, Sha AG, Diao HL, Yang ZM (2016) Non-coding RNA LINC00473 mediates decidualization of human endometrial stromal cells in response to cAMP signaling. Sci Rep 6:22744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zeng H, Fan X, Liu N (2017) Expression of H19 imprinted gene in patients with repeated implantation failure during the window of implantation. Arch Gynecol Obstet 296(4):835–839

    Article  CAS  PubMed  Google Scholar 

  69. Feng C, Shen JM, Lv PP, Jin M, Wang LQ, Rao JP, Feng L (2018) Construction of implantation failure related lncRNA-mRNA network and identification of lncRNA biomarkers for predicting endometrial receptivity. Int J Biol Sci 14(10):1361–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen MY, Liao GD, Zhou B, Kang LN, He YM, Li SW (2019) Genome-wide profiling of long noncoding RNA Expression patterns in women with repeated implantation failure by RNA sequencing. Reprod Sci 26(1):18–25

    Article  CAS  PubMed  Google Scholar 

  71. Fan LJ, Han HJ, Guan J, Zhang XW, Cui QH, Shen H, Shi C (2017) Aberrantly expressed long noncoding RNAs in recurrent implantation failure: a microarray related study. Syst Biol Reprod Med 63(4):269–278

    Article  CAS  PubMed  Google Scholar 

  72. Tsai JH, Chi MM, Schulte MB, Moley KH (2014) The fatty acid beta-oxidation pathway is important for decidualization of endometrial stromal cells in both humans and mice. Biol Reprod 90(2):34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Tong J, Yang J, Lv H, Lv S, Zhang C, Chen ZJ (2018) Dysfunction of pseudogene PGK1P2 is involved in preeclampsia by acting as a competing endogenous RNA of PGK1. Pregnancy Hypertens 13:37–45

    Article  PubMed  Google Scholar 

  74. Lv H, Tong J, Yang J, Lv S, Li WP, Zhang C, Chen ZJ (2018) Dysregulated pseudogene HK2P1 may contribute to preeclampsia as a competing endogenous RNA for hexokinase 2 by impairing decidualization. Hypertension 71(4):648–658

    Article  CAS  PubMed  Google Scholar 

  75. Yang X, Meng T (2019) Long noncoding RNA in preeclampsia: transcriptional noise or innovative indicators? Biomed Res Int 2019:5437621

    PubMed  PubMed Central  Google Scholar 

  76. Tong J, Zhao W, Lv H, Li WP, Chen ZJ, Zhang C (2018) Transcriptomic profiling in human decidua of severe preeclampsia detected by RNA sequencing. J Cell Biochem 119(1):607–615

    Article  CAS  PubMed  Google Scholar 

  77. Treiber T, Treiber N, Meister G (2019) Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol 20(1):5–20

    Article  CAS  PubMed  Google Scholar 

  78. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kosaka N, Iguchi H, Ochiya T (2010) Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 101(10):2087–2092

    Article  CAS  PubMed  Google Scholar 

  80. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105(30):10513–10518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang K (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56(11):1733–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liang J, Wang S, Wang Z (2017) Role of microRNAs in embryo implantation. Reprod Biol Endocrinol 15(1):90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Zhu XM, Han T, Sargent IL, Yin GW, Yao YQ (2009) Differential expression profile of microRNAs in human placentas from preeclamptic pregnancies vs normal pregnancies. Am J Obstet Gynecol 200(6):661e661–661e667

    Article  CAS  Google Scholar 

  84. Pan Q, Luo X, Toloubeydokhti T, Chegini N (2007) The expression profile of micro-RNA in endometrium and endometriosis and the influence of ovarian steroids on their expression. Mol Hum Reprod 13(11):797–806

    Article  CAS  PubMed  Google Scholar 

  85. Ferlita A, Battaglia R, Andronico F, Caruso S, Cianci A, Purrello M, Pietro CD (2018) Non-coding RNAs in endometrial physiopathology. Int J Mol Sci 19(7):2120

    Article  PubMed Central  CAS  Google Scholar 

  86. Bazer FW, Spencer TE, Johnson GA, Burghardt RC (2011) Uterine receptivity to implantation of blastocysts in mammals. Front Biosci (Schol Ed) 3:745–767

    Article  Google Scholar 

  87. Estella C, Herrer I, Moreno-Moya JM, Quinonero A, Martinez S, Pellicer A, Simon C (2012) miRNA signature and Dicer requirement during human endometrial stromal decidualization in vitro. PLoS One 7(7):e41080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tochigi H, Kajihara T, Mizuno Y, Mizuno Y, Tamaru S, Kamei Y, Okazaki Y, Brosens JJ, Ishihara O (2017) Loss of miR-542-3p enhances IGFBP-1 expression in decidualizing human endometrial stromal cells. Sci Rep 7:40001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kimura M, Kajihara T, Mizuno Y, Sato T, Ishihara O (2018) Loss of high-mobility group N5 contributes to the promotion of human endometrial stromal cell decidualization. Reprod Med Biol 17(4):493–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sultana S, Kajihara T, Mizuno Y, Sato T, Oguro T, Kimura M, Akita M, Ishihara O (2017) Overexpression of microRNA-542-3p attenuates the differentiating capacity of endometriotic stromal cells. Reprod Med Biol 16(2):170–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ji L, Zhang L, Li Y, Guo L, Cao N, Bai Z, Song Y, Xu Z, Zhang J, Liu C, Ma X (2017) MiR-136 contributes to pre-eclampsia through its effects on apoptosis and angiogenesis of mesenchymal stem cells. Placenta 50:102–109

    Article  CAS  PubMed  Google Scholar 

  92. Wang XB, Qi QR, Wu KL, Xie QZ (2018) Role of osteopontin in decidualization and pregnancy success. Reproduction 155(5):423–432

    Article  CAS  PubMed  Google Scholar 

  93. Zhang Q, Zhang H, Jiang Y, Xue B, Diao Z, Ding L, Zhen X, Sun H, Yan G, Hu Y (2015) MicroRNA-181a is involved in the regulation of human endometrial stromal cell decidualization by inhibiting Kruppel-like factor 12. Reprod Biol Endocrinol 13:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Qian K, Hu L, Chen H, Li H, Liu N, Li Y, Ai J, Zhu G, Tang Z, Zhang H (2009) Hsa-miR-222 is involved in differentiation of endometrial stromal cells in vitro. Endocrinology 150(10):4734–4743

    Article  CAS  PubMed  Google Scholar 

  95. Yang Q, Zhang X, Shi Y, He YP, Sun ZG, Shi HJ, Wang J (2018) Increased expression of NDRG3 in mouse uterus during embryo implantation and in mouse endometrial stromal cells during in vitro decidualization. Reprod Sci 25(8):1197–1207

    Article  CAS  PubMed  Google Scholar 

  96. Yang Y, Xie Y, Wu M, Geng Y, Li R, Xu L, Liu X, Pan Y (2017) Expression of mmu-miR-96 in the endometrium during early pregnancy and its regulatory effects on stromal cell apoptosis via Bcl2. Mol Med Rep 15(4):1547–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jimenez PT, Mainigi MA, Word RA, Kraus WL, Mendelson CR (2016) miR-200 regulates endometrial development during early pregnancy. Mol Endocrinol 30(9):977–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA 73(11):3852–3856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, Celniker SE, Graveley BR, Lai EC (2014) Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 9(5):1966–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang Y, Xue W, Li X, Zhang J, Chen S, Zhang JL, Yang L, Chen LL (2016) The biogenesis of nascent circular RNAs. Cell Rep 15(3):611–624

    Article  CAS  PubMed  Google Scholar 

  101. Wilusz JE (2017) Circular RNAs: unexpected outputs of many protein-coding genes. RNA Biol 14(8):1007–1017

    Article  PubMed  Google Scholar 

  102. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388

    Article  CAS  PubMed  Google Scholar 

  103. Liu L, Li L, Ma X, Yue F, Wang Y, Wang L, Jin P, Zhang X (2017) Altered circular RNA expression in patients with repeated implantation failure. Cell Physiol Biochem 44(1):303–313

    Article  CAS  PubMed  Google Scholar 

  104. Song Y, Zhang L, Liu X, Niu M, Cui J, Che S, Liu Y, An X, Cao B (2019) Analyses of circRNA profiling during the development from pre-receptive to receptive phases in the goat endometrium. J Anim Sci Biotechnol 10:34

    Article  PubMed  PubMed Central  Google Scholar 

  105. Zhang L, Liu X, Che S, Cui J, Liu Y, An X, Cao B, Song Y (2018) CircRNA-9119 regulates the expression of prostaglandin-endoperoxide synthase 2 (PTGS2) by sponging miR-26a in the endometrial epithelial cells of dairy goat. Reprod Fertil Dev 30(12):1759–1769

    Article  CAS  PubMed  Google Scholar 

  106. Zhang S, Ding Y, He J, Zhang J, Liu X, Chen X, Su Y, Wang Y, Gao R (2019) Altered expression patterns of circular RNAs between implantation sites and interimplantation sites in early pregnant mice. J Cell Physiol 234(6):9862–9872

    Article  CAS  PubMed  Google Scholar 

  107. Kong S, Zhou C, Bao H, Ni Z, Liu M, He B, Huang L, Sun Y, Wang H, Lu J (2019) Epigenetic control of embryo-uterine crosstalk at peri-implantation. Cell Mol Life Sci 76(24):4813–4828

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Key Research & Developmental Program of China (2018YFC1003900; 2018YFC1003904), and National Natural Science Foundation of China (No. 81871186).

Author information

Authors and Affiliations

Authors

Contributions

HL design, text and drawings. XH text and drawings. GM and AL design, text revision and final approval.

Corresponding author

Correspondence to Aihua Liao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Huang, X., Mor, G. et al. Epigenetic modifications working in the decidualization and endometrial receptivity. Cell. Mol. Life Sci. 77, 2091–2101 (2020). https://doi.org/10.1007/s00018-019-03395-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03395-9

Keywords

Navigation