Skip to main content
Log in

The link between endometrial stromal cell senescence and decidualization in female fertility: the art of balance

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cell senescence seems to be an ambivalent biological phenomenon in many aspects. At the cellular level it is considered as an irreversible cell-cycle arrest commonly caused by the DNA damage. Senescent cells harbor a lot of impairments in various intracellular systems. Presence of senescent cells within tissues should ultimately lead to their malfunctioning. However, the interlink between cellular senescence and tissue/organismal functioning is far from always being unidirectional. The entangled and complex relationship between senescence and tissue-specific decidual differentiation of endometrial stromal cells (ESCs) is the excellent example reflecting dualism of cellular senescence. ESCs decidualization conditions endometrium responsiveness to embryonic signals and plays a critical role in embryo biosensoring, selection and implantation. Based on the analysis of the existing literary data, here we will try (1) to puzzle out how cellular senescence simultaneously may be an integral part of normal decidualization and may be involved in the progression of repeated implantation failures and recurrent pregnancy losses; (2) to suppose the sequence of cellular events reflecting the role of ESCs’ senescence during normal and impaired decidualization. Together, the deep scan of the interlink between ESCs’ senescence and decidualization will allow to suggest the preferable application scheme for senolytics targeting senescent cells as a possible approach to restore impaired endometrial receptivity and thus to increase the effectiveness of in vitro fertilization cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hayflick L (1965) The limited in vitro lifespan of human diploid strains. Exp Cell Res 37:614–636. https://doi.org/10.1016/0014-4827(65)90211-9

    Article  CAS  PubMed  Google Scholar 

  2. Borodkina AV, Deryabin PI, Giukova AA, Nikolsky NN (2018) “Social Life” of Senescent cells: what is SASP and why study it? Acta Naturae 10:4–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ogrodnik M, Salmonowicz H, Gladyshev VN (2019) Integrating cellular senescence with the concept of damage accumulation in aging: relevance for clearance of senescent cells. Aging Cell 18:e12841. https://doi.org/10.1111/acel.12841

    Article  CAS  PubMed  Google Scholar 

  4. Burova E, Borodkina A, Shatrova A, Nikolsky N (2013) Sublethal oxidative stress induces the premature senescence of human mesenchymal stem cells derived from endometrium. Oxid Med Cell Longev 2013:474931. https://doi.org/10.1155/2013/474931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fridlyanskaya I, Alekseenko L, Nikolsky N (2015) Senescence as a general cellular response to stress: a mini-review. Exp Gerontol 72:124–128. https://doi.org/10.1016/j.exger.2015.09.021

    Article  PubMed  Google Scholar 

  6. Toussaint O, Medrano EE, von Zglinicki T (2000) Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol 35:927–945. https://doi.org/10.1016/S0531-5565(00)00180-7

    Article  CAS  PubMed  Google Scholar 

  7. Muñoz-Espín D, Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15:482–496. https://doi.org/10.1038/nrm3823

    Article  CAS  PubMed  Google Scholar 

  8. Anderson R, Lagnado A, Maggiorani D et al (2019) Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J. https://doi.org/10.15252/embj.2018100492

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ogrodnik M, Zhu Y, Langhi LGP et al (2019) Obesity-induced cellular senescence drives anxiety and impairs neurogenesis. Cell Metab 29:1061.e8–1077.e8. https://doi.org/10.1016/j.cmet.2018.12.008

    Article  CAS  Google Scholar 

  10. Di D’Adda F (2008) Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 8:512–522. https://doi.org/10.1038/nrc2440

    Article  CAS  Google Scholar 

  11. d’Adda di Fagagna F, Reaper PM, Clay-Farrace L et al (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198. https://doi.org/10.1038/nature02118

    Article  CAS  PubMed  Google Scholar 

  12. Victorelli S, Passos JF (2017) Telomeres and cell senescence—size matters not. EBioMedicine 21:14–20. https://doi.org/10.1016/j.ebiom.2017.03.027

    Article  PubMed  PubMed Central  Google Scholar 

  13. Borodkina A, Shatrova A, Abushik P et al (2014) Interaction between ROS dependent DNA damage, mitochondria and p38 MAPK underlies senescence of human adult stem cells. Aging (Albany NY) 6:481–495. https://doi.org/10.18632/aging.100673

    Article  Google Scholar 

  14. Serrano M, Lin AW, McCurrach ME et al (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16(INK4a). Cell 88:593–602. https://doi.org/10.1016/S0092-8674(00)81902-9

    Article  CAS  PubMed  Google Scholar 

  15. Seluanov A, Mittelman D, Pereira-Smith OM et al (2004) DNA end joining be comes less efficient and more error-prone during cellular senescence. Proc Natl Acad Sci USA 101:7624–7629. https://doi.org/10.1073/pnas.0400726101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fumagalli M, Rossiello F, Mondello C, D’Adda Di Fagagna F (2014) Stable cellular senescence is associated with persistent DDR activation. PLoS One 9:e110969. https://doi.org/10.1371/journal.pone.0110969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rodier F, Muñoz DP, Teachenor R et al (2011) DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J Cell Sci 124:68–81. https://doi.org/10.1242/jcs.071340

    Article  CAS  PubMed  Google Scholar 

  18. Rossiello F, Herbig U, Longhese MP et al (2014) Irreparable telomeric DNA damage and persistent DDR signalling as a shared causative mechanism of cellular senescence and ageing. Curr Opin Genet Dev 26:89–95. https://doi.org/10.1016/j.gde.2014.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Coppé JP, Patil CK, Rodier F et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868. https://doi.org/10.1371/journal.pbio.0060301

    Article  CAS  PubMed  Google Scholar 

  20. Fumagalli M, d’Adda di Fagagna F (2009) SASPense and DDRama in cancer and ageing. Nat Cell Biol 11:921–923. https://doi.org/10.1038/ncb0809-921

    Article  CAS  PubMed  Google Scholar 

  21. Coppé J-P, Desprez P-Y, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol Mech Dis 5:99–118. https://doi.org/10.1146/annurev-pathol-121808-102144

    Article  CAS  Google Scholar 

  22. Lujambio A (2016) To clear, or not to clear (senescent cells)? That is the question. Bioessays 38(Suppl 1):56–64. https://doi.org/10.1002/bies.201670910

    Article  Google Scholar 

  23. Malaquin N, Martinez A, Rodier F (2016) Keeping the senescence secretome under control: molecular reins on the senescence-associated secretory phenotype. Exp Gerontol 82:39–49. https://doi.org/10.1016/j.exger.2016.05.010

    Article  CAS  PubMed  Google Scholar 

  24. Rao SG, Jackson JG (2016) SASP: tumor suppressor or promoter? Yes! Trends Cancer 2:676–687. https://doi.org/10.1016/j.trecan.2016.10.001

    Article  PubMed  Google Scholar 

  25. Baar MP, Brandt RMC, Putavet DA et al (2017) Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169:132.e16–147.e16. https://doi.org/10.1016/j.cell.2017.02.031

    Article  CAS  Google Scholar 

  26. Van Deursen JM (2014) The role of senescent cells in ageing. Nature 509:439–446. https://doi.org/10.1038/nature13193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Acosta JC, Banito A, Wuestefeld T et al (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15:978–990. https://doi.org/10.1038/ncb2784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nelson G, Wordsworth J, Wang C et al (2012) A senescent cell bystander effect: senescence-induced senescence. Aging Cell 11:345–349. https://doi.org/10.1111/j.1474-9726.2012.00795.x

    Article  CAS  PubMed  Google Scholar 

  29. Nelson SM, Lawlor DA (2011) Predicting live birth, preterm delivery, and low birth weight in infants born from in vitro fertilisation: a prospective study of 144,018 treatment cycles. PLoS Med 8:e1000386. https://doi.org/10.1371/journal.pmed.1000386

    Article  PubMed  PubMed Central  Google Scholar 

  30. Acosta JC, O’Loghlen A, Banito A et al (2008) Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133:1006–1018. https://doi.org/10.1016/j.cell.2008.03.038

    Article  CAS  PubMed  Google Scholar 

  31. Hubackova S, Krejcikova K, Bartek J, Hodny Z (2012) IL1-and TGFβ-Nox4 signaling, oxidative stress and DNA damage response are shared features of replicative, oncogene-induced, and drug-induced paracrine “Bystander senescence”. Aging (Albany NY) 4:932–951. https://doi.org/10.18632/aging.100520

    Article  CAS  Google Scholar 

  32. Demaria M, O’Leary MN, Chang J et al (2017) Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov 7:165–176. https://doi.org/10.1158/2159-8290.CD-16-0241

    Article  CAS  PubMed  Google Scholar 

  33. Krtolica A, Parrinello S, Lockett S et al (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA 98:12072–12077. https://doi.org/10.1073/pnas.211053698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Malaquin N, Vercamer C, Bouali F et al (2013) Senescent fibroblasts enhance early skin carcinogenic events via a paracrine MMP-PAR-1 axis. PLoS One 8:e63607. https://doi.org/10.1371/journal.pone.0063607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. de Keizer PLJ (2017) The fountain of youth by targeting senescent cells? Trends Mol Med 23:6–17. https://doi.org/10.1016/j.molmed.2016.11.006

    Article  PubMed  Google Scholar 

  36. Baker DJ, Wijshake T, Tchkonia T et al (2011) Clearance of p16 Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–236. https://doi.org/10.1038/nature10600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Baker DJ, Childs BG, Durik M et al (2016) Naturally occurring p16 Ink4a-positive cells shorten healthy lifespan. Nature 530:184–189. https://doi.org/10.1038/nature16932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhu Y, Tchkonia T, Pirtskhalava T et al (2015) The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14:644–658. https://doi.org/10.1111/acel.12344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Farr JN, Xu M, Weivoda MM et al (2017) Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 23:1072–1079. https://doi.org/10.1038/nm.4385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jeon OH, Kim C, Laberge RM et al (2017) Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med 23:775–781. https://doi.org/10.1038/nm.4324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schafer MJ, White TA, Iijima K et al (2017) Cellular senescence mediates fibrotic pulmonary disease. Nat Commun 8:14532. https://doi.org/10.1038/ncomms14532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Justice JN, Nambiar AM, Tchkonia T et al (2019) Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine 40:554–563. https://doi.org/10.1016/j.ebiom.2018.12.052

    Article  PubMed  PubMed Central  Google Scholar 

  43. Strauss J, Barbieri R (2014) Yen and Jaffe’s reproductive endocrinology: physiology, pathophysiology, and clinical management. Saunders, Philadelphia

    Google Scholar 

  44. Gellersen B, Brosens JJ (2014) Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr Rev 35:851–905. https://doi.org/10.1210/er.2014-1045

    Article  CAS  PubMed  Google Scholar 

  45. Teklenburg G, Salker M, Molokhia M et al (2010) Natural selection of human embryos: decidualizing endometrial stromal cells serve as sensors of embryo quality upon implantation. PLoS One 5:e10258. https://doi.org/10.1371/journal.pone.0010258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Macklon NS, Brosens JJ (2014) The human endometrium as a sensor of embryo quality. Biol Reprod 98:1–8. https://doi.org/10.1095/biolreprod.114.122846

    Article  CAS  Google Scholar 

  47. Gossman W, Fagan SE, Sosa-Stanley JN, Peterson DC (2019) Anatomy, abdomen and pelvis, uterus. StatPearls Publishing LLC, St. Petersburg

    Google Scholar 

  48. Gargett CE (2007) Uterine stem cells: what is the evidence? Hum Reprod Update 13:87–101. https://doi.org/10.1093/humupd/dml045

    Article  CAS  PubMed  Google Scholar 

  49. Jabbour HN, Kelly RW, Fraser HM, Critchley HOD (2006) Endocrine regulation of menstruation. Endocr Rev 27:17–46. https://doi.org/10.1210/er.2004-0021

    Article  CAS  PubMed  Google Scholar 

  50. Padykula HA (1991) Regeneration in the primate uterus: the role of stem cells. Ann N Y Acad Sci 622:47–56. https://doi.org/10.1111/j.1749-6632.1991.tb37849.x

    Article  CAS  PubMed  Google Scholar 

  51. Yoshie M, Kusama K, Tamura K (2015) Molecular mechanisms of human endometrial decidualization activated by cyclic adenosine monophosphate signaling pathways. J Mamm Ova Res 32:95–102. https://doi.org/10.1093/molehr/gax015

    Article  CAS  Google Scholar 

  52. Park Y, Nnamani MC, Maziarz J, Wagner GP (2016) Cis-regulatory evolution of forkhead box O1 (FOXO1), a terminal selector gene for decidual stromal cell identity. Mol Biol Evol 33:3161–3169. https://doi.org/10.1093/molbev/msw193

    Article  CAS  PubMed  Google Scholar 

  53. Brosens JJ, Salker MS, Teklenburg G et al (2014) Uterine selection of human embryos at implantation. Sci Rep 4:3894. https://doi.org/10.1038/srep03894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Durairaj RRP, Aberkane A, Polanski L et al (2017) Deregulation of the endometrial stromal cell secretome precedes embryo implantation failure. Mol Hum Reprod 23:478–487. https://doi.org/10.1093/molehr/gax023

    Article  CAS  Google Scholar 

  55. Erlebacher A (2013) Immunology of the maternal-fetal interface. Annu Rev Immunol 31:387–411. https://doi.org/10.1146/annurev-immunol-032712-100003

    Article  CAS  PubMed  Google Scholar 

  56. Kuroda K, Venkatakrishnan R, Salker MS et al (2013) Induction of 11β-HSD 1 and activation of distinct mineralocorticoid receptor- and glucocorticoid receptor-dependent gene networks in decidualizing human endometrial stromal cells. Mol Endocrinol 27:192–202. https://doi.org/10.1210/me.2012-1247

    Article  CAS  PubMed  Google Scholar 

  57. Kuroda K, Venkatakrishnan R, James S et al (2013) Elevated periimplantation uterine natural killer cell density in human endometrium is associated with impaired corticosteroid signaling in decidualizing stromal cells. J Clin Endocrinol Metab 98:4429–4437. https://doi.org/10.1210/jc.2013-1977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lucas ES, Dyer NP, Murakami K et al (2016) Loss of endometrial plasticity in recurrent pregnancy loss. Stem Cells 34:346–356. https://doi.org/10.1002/stem.2222

    Article  CAS  PubMed  Google Scholar 

  59. Salker MS, Nautiyal J, Steel JH et al (2012) Disordered IL-33/ST2 activation in decidualizing stromal cells prolongs uterine receptivity in women with recurrent pregnancy loss. PLoS One 7:e52252. https://doi.org/10.1371/journal.pone.0052252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brighton PJ, Maruyama Y, Fishwick K et al (2017) Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. Elife 6:e31274. https://doi.org/10.7554/eLife.31274

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lucas ES, Dyer NP, Fishwick K et al (2016) Success after failure: the role of endometrial stem cells in recurrent miscarriage. Reproduction 152:R159–R166. https://doi.org/10.1530/REP-16-0306

    Article  CAS  PubMed  Google Scholar 

  62. Marquez CMD, Ibana JA, Velarde MC (2017) The female reproduction and senescence nexus. Am J Reprod Immunol 77:e12646. https://doi.org/10.1111/aji.12646

    Article  Google Scholar 

  63. Laws MJ, Taylor RN, Sidell N et al (2008) Gap junction communication between uterine stromal cells plays a critical role in pregnancy-associated neovascularization and embryo survival. Development 135:2659–2668. https://doi.org/10.1242/dev.019810

    Article  CAS  PubMed  Google Scholar 

  64. Cha JM, Aronoff DM (2017) A role for cellular senescence in birth timing. Cell Cycle 16:2023–2031. https://doi.org/10.1080/15384101.2017.1371888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lucas ES, Vrljicak P, Diniz-Da-Costa MM et al (2018) Reconstruction of the decidual pathways in human endometrial cells using single-cell RNA-Seq. bioRxiv. https://doi.org/10.1101/368829

    Article  Google Scholar 

  66. Hirota Y, Daikoku T, Tranguch S et al (2010) Uterine-specific p53 deficiency confers premature uterine senescence and promotes preterm birth in mice. J Clin Invest 120:803–815. https://doi.org/10.1172/JCI40051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hirota Y (2014) Endometrial cellular senescence contributes to preterm birth. Inflamm Regen 34:64–68

    Article  CAS  Google Scholar 

  68. Hirota Y, Cha J, Yoshie M et al (2011) Heightened uterine mammalian target of rapamycin complex 1 (mTORC1) signaling provokes preterm birth in mice. Proc Natl Acad Sci USA 108:18073–18078. https://doi.org/10.1073/pnas.1108180108

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cha J, Bartos A, Egashira M et al (2013) Combinatory approaches prevent preterm birth profoundly exacerbated by gene-environment interactions. J Clin Invest 123:4063–4075. https://doi.org/10.1172/JCI70098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liao Y, Jiang Y, He H et al (2015) NEDD8-mediated neddylation is required for human endometrial stromal proliferation and decidualization. Hum Reprod 30:1665–1676. https://doi.org/10.1093/humrep/dev117

    Article  CAS  PubMed  Google Scholar 

  71. Kusama K, Yoshie M, Tamura K et al (2014) The role of exchange protein directly activated by cyclic AMP 2-mediated calreticulin expression in the decidualization of human endometrial stromal cells. Endocrinology 155:240–248. https://doi.org/10.1210/en.2013-1478

    Article  CAS  PubMed  Google Scholar 

  72. Huo Y, Iadevaia V, Yao Z et al (2012) Stable isotope-labelling analysis of the impact of inhibition of the mammalian target of rapamycin on protein synthesis. Biochem J 444:141–151. https://doi.org/10.1042/BJ20112107

    Article  CAS  PubMed  Google Scholar 

  73. Ochiai A, Kuroda K, Ozaki R et al (2019) Resveratrol inhibits decidualization by accelerating downregulation of the CRABP2-RAR pathway in differentiating human endometrial stromal cells. Cell Death Dis 10:276. https://doi.org/10.1038/s41419-019-1511-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ochiai A, Kuroda K, Ikemoto Y et al (2019) Influence of resveratrol supplementation on IVF-embryo transfer cycle outcomes. Reprod Biomed Online 39:205–210. https://doi.org/10.1016/j.rbmo.2019.03.205

    Article  CAS  PubMed  Google Scholar 

  75. Practice Committee of the American Society for Reproductive Medicine (2012) Evaluation and treatment of recurrent pregnancy loss: a committee opinion. Fertil Steril 98:1103–1111. https://doi.org/10.1016/j.fertnstert.2012.06.048

    Article  Google Scholar 

  76. Coughlan C, Ledger W, Wang Q, Liu F, Demirol A, Gurgan T, Cutting R, Ong K, Sallam H, Li TC (2014) Recurrent implantation failure: definition and management. Reprod Biomed Online 28:14–38. https://doi.org/10.1016/j.rbmo.2013.08.011

    Article  CAS  PubMed  Google Scholar 

  77. Francis J, Rai R, Sebire NJ et al (2006) Impaired expression of endometrial differentiation markers and complement regulatory proteins in patients with recurrent pregnancy loss associated with antiphospholipid syndrome. Mol Hum Reprod 12:435–442. https://doi.org/10.1093/molehr/gal048

    Article  CAS  PubMed  Google Scholar 

  78. Huang C, Jiang Y, Zhou J et al (2017) Increased Krüppel-like factor 12 in recurrent implantation failure impairs endometrial decidualization by repressing Nur77 expression. Reprod Biol Endocrinol 15:25. https://doi.org/10.1186/s12958-017-0243-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Salker M, Teklenburg G, Molokhia M et al (2010) Natural selection of human embryos: impaired decidualization of endometrium disables embryo-maternal interactions and causes recurrent pregnancy loss. PLoS One 5:e10287. https://doi.org/10.1371/journal.pone.0010287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wu D, Kimura F, Zheng L et al (2017) Chronic endometritis modifies decidualization in human endometrial stromal cells. Reprod Biol Endocrinol 15:16. https://doi.org/10.1186/s12958-017-0233-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kuroda K (2019) Impaired endometrial function and unexplained recurrent pregnancy loss. Hypertens Res Pregnancy 7:16–21. https://doi.org/10.14390/jsshp.HRP2018-012

    Article  Google Scholar 

  82. Kitaya K (2011) Prevalence of chronic endometritis in recurrent miscarriages. Fertil Steril 95:1156–1158. https://doi.org/10.1016/j.fertnstert.2010.09.061

    Article  PubMed  Google Scholar 

  83. Cicinelli E, Matteo M, Tinelli R et al (2015) Prevalence of chronic endometritis in repeated unexplained implantation failure and the IVF success rate after antibiotic therapy. Hum Reprod 30:323–330. https://doi.org/10.1093/humrep/deu292

    Article  PubMed  Google Scholar 

  84. Bouet PE, El Hachem H, Monceau E et al (2016) Chronic endometritis in women with recurrent pregnancy loss and recurrent implantation failure: prevalence and role of office hysteroscopy and immunohistochemistry in diagnosis. Fertil Steril 105:106–110. https://doi.org/10.1016/j.fertnstert.2015.09.025

    Article  PubMed  Google Scholar 

  85. Kupka MS, Ferraretti AP, de Mouzon J et al (2014) Assisted reproductive technology in Europe, 2010: results generated from European registers by ESHRE†. Hum Reprod 29:2099–2113. https://doi.org/10.1093/humrep/deu175

    Article  CAS  PubMed  Google Scholar 

  86. Zarinara A, Zeraati H, Kamali K et al (2015) Models predicting success of infertility treatment: a systematic review. J Reprod Infertil 17:68–81

    Google Scholar 

  87. Kupka MS, D’Hooghe T, Ferraretti AP et al (2016) Assisted reproductive technology in Europe, 2011: results generated from European registers by ESHRE. Hum Reprod 31:233–248. https://doi.org/10.1093/humrep/dev319

    Article  CAS  PubMed  Google Scholar 

  88. Revel A (2012) Defective endometrial receptivity. Fertil Steril 97:1028–1032. https://doi.org/10.1016/j.fertnstert.2012.03.039

    Article  PubMed  Google Scholar 

  89. Bourgeois B, Madl T (2018) Regulation of cellular senescence via the FOXO4-p53 axis. FEBS Lett 592:2083–2097. https://doi.org/10.1002/1873-3468.13057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chang J, Wang Y, Shao L et al (2016) Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 22:78–83. https://doi.org/10.1038/nm.4010

    Article  CAS  PubMed  Google Scholar 

  91. Fuhrmann-Stroissnigg H, Ling YY, Zhao J et al (2017) Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun 8:422. https://doi.org/10.1038/s41467-017-00314-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Myrianthopoulos V (2018) The emerging field of senotherapeutic drugs. Future Med Chem 10:2369–2372. https://doi.org/10.4155/fmc-2018-0234

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Maria Sirotkina for the assistance in the figures design.

Funding

This study was funded by the Russian Science Foundation (# 19-74-10038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Borodkina.

Ethics declarations

Conflict of interest

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deryabin, P., Griukova, A., Nikolsky, N. et al. The link between endometrial stromal cell senescence and decidualization in female fertility: the art of balance. Cell. Mol. Life Sci. 77, 1357–1370 (2020). https://doi.org/10.1007/s00018-019-03374-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03374-0

Keywords

Navigation