Skip to main content
Log in

E-cadherin and Src associate with extradesmosomal Dsg3 and modulate desmosome assembly and adhesion

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

A Letters and Comments to this article was published on 24 December 2015

Abstract

Desmosomes provide strong intercellular cohesion essential for the integrity of cells and tissues exposed to continuous mechanical stress. For desmosome assembly, constitutively synthesized desmosomal cadherins translocate to the cell–cell border, cluster and mature in the presence of Ca2+ to stable cell contacts. As adherens junctions precede the formation of desmosomes, we investigated in this study the relationship between the classical cadherin E-cadherin and the desmosomal cadherin Desmoglein 3 (Dsg3), the latter of which is indispensable for cell–cell adhesion in keratinocytes. By using autoantibodies from patients with the blistering skin disease pemphigus vulgaris (PV), we showed in loss of function studies that E-cadherin compensates for effects of desmosomal disassembly. Overexpression of E-cadherin reduced the loss of cell cohesion induced by PV autoantibodies and attenuated activation of p38 MAPK. Silencing of E-cadherin abolished the localization of Dsg3 at the membrane and resulted in a shift of Dsg3 from the cytoskeletal to the non-cytoskeletal protein pool which conforms to the notion that E-cadherin regulates desmosome assembly. Mechanistically, we identified a complex consisting of extradesmosomal Dsg3, E-cadherin, β-catenin and Src and that the stability of this complex is regulated by Src. Moreover, Dsg3 and E-cadherin are phosphorylated on tyrosine residues in a Src-dependent manner and Src activity is required for recruiting Dsg3 to the cytoskeletal pool as well as for desmosome maturation towards a Ca2+-insensitive state. Our data provide new insights into the role of E-cadherin and the contribution of Src signaling for formation and maintenance of desmosomal junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Dsg:

Desmogleins

Dsc:

Desmocollin

PV:

Pemphigus vulgaris

PG:

Plakoglobin

DP:

Desmoplakin

E-cad:

E-cadherin

Ab:

Antibody

GFP:

Green fluorescent protein

PKC:

Protein kinase C

p38 MAPK:

p38 mitogen-activated protein kinase

p-Tyr:

Phospho-tyrosine

Src:

Rous sarcoma (Src) kinase

Pkp:

Plakophilin

AJ:

Adherens junction

IgG:

Immunoglobulin G

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

PBS:

Phosphate buffered saline

Hbss:

Hank’s buffered saline solution

IP:

Immunoprecipitation

siRNA:

Small interfering RNA

n.t.:

Non-targeting

References

  1. Aberle H, Butz S, Stappert J et al (1994) Assembly of the cadherin-catenin complex in vitro with recombinant proteins. J Cell Sci 107(Pt 12):3655–3663

    PubMed  CAS  Google Scholar 

  2. Amagai M, Fujimori T, Masunaga T et al (1995) Delayed assembly of desmosomes in keratinocytes with disrupted classic-cadherin-mediated cell adhesion by a dominant negative mutant. J Invest Dermatol 104:27–32

    Article  PubMed  CAS  Google Scholar 

  3. Amagai M, Stanley JR (2012) Desmoglein as a target in skin disease and beyond. J Invest Dermatol 132:776–784

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Bass-Zubek AE, Hobbs RP, Amargo EV et al (2008) Plakophilin 2: a critical scaffold for PKC alpha that regulates intercellular junction assembly. J Cell Biol 181:605–613

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Bedane C, Prost C, Thomine E et al (1996) Binding of autoantibodies is not restricted to desmosomes in pemphigus vulgaris: comparison of 14 cases of pemphigus vulgaris and 10 cases of pemphigus foliaceus studied by western immunoblot and immunoelectron microscopy. Arch Dermatol Res 288:343–352

    Article  PubMed  CAS  Google Scholar 

  6. Bektas M, Jolly PS, Berkowitz P et al (2013) A pathophysiologic role for epidermal growth factor receptor in pemphigus acantholysis. J Biol Chem 288:9447–9456

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Berkowitz P, Hu P, Liu Z et al (2005) Desmosome signaling. Inhibition of p38MAPK prevents pemphigus vulgaris IgG-induced cytoskeleton reorganization. J Biol Chem 280:23778–23784

    Article  PubMed  CAS  Google Scholar 

  8. Berkowitz P, Hu P, Warren S et al (2006) p38MAPK inhibition prevents disease in pemphigus vulgaris mice. Proc Natl Acad Sci USA 103:12855–12860

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Calautti E, Cabodi S, Stein PL et al (1998) Tyrosine phosphorylation and src family kinases control keratinocyte cell–cell adhesion. J Cell Biol 141:1449–1465

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Calautti E, Grossi M, Mammucari C et al (2002) Fyn tyrosine kinase is a downstream mediator of Rho/PRK2 function in keratinocyte cell–cell adhesion. J Cell Biol 156:137–148

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Chen CL, Chen HC (2009) Functional suppression of E-cadherin by protein kinase Cdelta. J Cell Sci 122:513–523

    Article  PubMed  CAS  Google Scholar 

  12. Chernyavsky AI, Arredondo J, Kitajima Y et al (2007) Desmoglein versus non-desmoglein signaling in pemphigus acantholysis: characterization of novel signaling pathways downstream of pemphigus vulgaris antigens. J Biol Chem 282:13804–13812

    Article  PubMed  CAS  Google Scholar 

  13. Cirillo N, Alshwaimi E, Mccullough M et al (2014) Pemphigus vulgaris autoimmune globulin induces Src-dependent tyrosine-phosphorylation of plakophilin 3 and its detachment from desmoglein 3. Autoimmunity 47:134–140

    Article  PubMed  CAS  Google Scholar 

  14. Dehner C, Rotzer V, Waschke J et al (2014) A desmoplakin point mutation with enhanced keratin association ameliorates pemphigus vulgaris autoantibody-mediated loss of cell cohesion. Am J Pathol 184:2528–2536

    Article  PubMed  CAS  Google Scholar 

  15. Delva E, Tucker DK, Kowalczyk AP (2009) The desmosome. Cold Spring Harb Perspect Biol 1:a002543

    Article  PubMed  PubMed Central  Google Scholar 

  16. Evangelista F, Dasher DA, Diaz LA et al (2008) E-cadherin is an additional immunological target for pemphigus autoantibodies. J Invest Dermatol 128:1710–1718

    Article  PubMed  CAS  Google Scholar 

  17. Fincham VJ, Frame MC (1998) The catalytic activity of Src is dispensable for translocation to focal adhesions but controls the turnover of these structures during cell motility. EMBO J 17:81–92

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Franke WW (2009) Discovering the molecular components of intercellular junctions–a historical view. Cold Spring Harb Perspect Biol 1:a003061

    Article  PubMed  PubMed Central  Google Scholar 

  19. Garrod D, Chidgey M (2008) Desmosome structure, composition and function. Biochim Biophys Acta 1778:572–587

    Article  PubMed  CAS  Google Scholar 

  20. Garrod D, Kimura TE (2008) Hyper-adhesion: a new concept in cell–cell adhesion. Biochem Soc Trans 36:195–201

    Article  PubMed  CAS  Google Scholar 

  21. Gliem M, Heupel WM, Spindler V et al (2010) Actin reorganization contributes to loss of cell adhesion in pemphigus vulgaris. Am J Physiol Cell Physiol 299:C606–C613

    Article  PubMed  CAS  Google Scholar 

  22. Godsel LM, Hsieh SN, Amargo EV et al (2005) Desmoplakin assembly dynamics in four dimensions: multiple phases differentially regulated by intermediate filaments and actin. J Cell Biol 171:1045–1059

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Gosavi P, Kundu ST, Khapare N et al (2011) E-cadherin and plakoglobin recruit plakophilin3 to the cell border to initiate desmosome assembly. Cell Mol Life Sci 68:1439–1454

    Article  PubMed  CAS  Google Scholar 

  24. Gumbiner B, Stevenson B, Grimaldi A (1988) The role of the cell adhesion molecule uvomorulin in the formation and maintenance of the epithelial junctional complex. J Cell Biol 107:1575–1587

    Article  PubMed  CAS  Google Scholar 

  25. Hartlieb E, Rotzer V, Radeva M et al (2014) Desmoglein 2 compensates for desmoglein 3 but does not control cell adhesion via regulation of p38 mitogen-activated protein kinase in keratinocytes. J Biol Chem 289:17043–17053

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Hennings H, Holbrook KA (1983) Calcium regulation of cell–cell contact and differentiation of epidermal cells in culture. An ultrastructural study. Exp Cell Res 143:127–142

    Article  PubMed  CAS  Google Scholar 

  27. Heupel WM, Engerer P, Schmidt E et al (2009) Pemphigus vulgaris IgG cause loss of desmoglein-mediated adhesion and keratinocyte dissociation independent of epidermal growth factor receptor. Am J Pathol 174:475–485

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Huber O (2003) Structure and function of desmosomal proteins and their role in development and disease. Cell Mol Life Sci 60:1872–1890

    Article  PubMed  CAS  Google Scholar 

  29. Hulsken J, Birchmeier W, Behrens J (1994) E-cadherin and APC compete for the interaction with beta-catenin and the cytoskeleton. J Cell Biol 127:2061–2069

    Article  PubMed  CAS  Google Scholar 

  30. Kitajima Y (2014) 150(th) anniversary series: desmosomes and autoimmune disease, perspective of dynamic desmosome remodeling and its impairments in pemphigus. Cell Commun Adhes 21:269–280

    Article  PubMed  CAS  Google Scholar 

  31. Kitajima Y (2013) New insights into desmosome regulation and pemphigus blistering as a desmosome-remodeling disease. Kaohsiung J Med Sci 29:1–13

    Article  PubMed  CAS  Google Scholar 

  32. Kitajima Y, Aoyama Y, Seishima M (1999) Transmembrane signaling for adhesive regulation of desmosomes and hemidesmosomes, and for cell–cell detachment induced by pemphigus IgG in cultured keratinocytes: involvement of protein kinase C. The Journal of Investigative Dermatology. Symposium Proceedings/the Society for Investigative Dermatology, Inc., European Society for Dermatological Research, vol 4, pp 137–144

  33. Lewis JE, Jensen PJ, Wheelock MJ (1994) Cadherin function is required for human keratinocytes to assemble desmosomes and stratify in response to calcium. J Invest Dermatol 102:870–877

    Article  PubMed  CAS  Google Scholar 

  34. Lewis JE, Wahl JK 3rd, Sass KM et al (1997) Cross-talk between adherens junctions and desmosomes depends on plakoglobin. J Cell Biol 136:919–934

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Mclachlan RW, Yap AS (2007) Not so simple: the complexity of phosphotyrosine signaling at cadherin adhesive contacts. J Mol Med 85:545–554

    Article  PubMed  CAS  Google Scholar 

  36. Michels C, Buchta T, Bloch W et al (2009) Classical cadherins regulate desmosome formation. J Invest Dermatol 129:2072–2075

    Article  PubMed  CAS  Google Scholar 

  37. Mueller H, Franke WW (1983) Biochemical and immunological characterization of desmoplakins I and II, the major polypeptides of the desmosomal plaque. J Mol Biol 163:647–671

    Article  PubMed  CAS  Google Scholar 

  38. Nam JS, Ino Y, Sakamoto M et al (2002) Src family kinase inhibitor PP2 restores the E-cadherin/catenin cell adhesion system in human cancer cells and reduces cancer metastasis. Clin Cancer Res 8:2430–2436

    PubMed  CAS  Google Scholar 

  39. Nekrasova OE, Amargo EV, Smith WO et al (2011) Desmosomal cadherins utilize distinct kinesins for assembly into desmosomes. J Cell Biol 195:1185–1203

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Niessen CM (2007) Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol 127:2525–2532

    Article  PubMed  CAS  Google Scholar 

  41. O’keefe EJ, Briggaman RA, Herman B (1987) Calcium-induced assembly of adherens junctions in keratinocytes. J Cell Biol 105:807–817

    Article  PubMed  Google Scholar 

  42. Oliveira ME, Culton DA, Prisayanh P et al (2013) E-cadherin autoantibody profile in patients with pemphigus vulgaris. Br J Dermatol 169:812–818

    Article  PubMed  CAS  Google Scholar 

  43. Owens DW, Mclean GW, Wyke AW et al (2000) The catalytic activity of the Src family kinases is required to disrupt cadherin-dependent cell–cell contacts. Mol Biol Cell 11:51–64

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Pece S, Gutkind JS (2000) Signaling from E-cadherins to the MAPK pathway by the recruitment and activation of epidermal growth factor receptors upon cell–cell contact formation. J Biol Chem 275:41227–41233

    Article  PubMed  CAS  Google Scholar 

  45. Pretel M, Espana A, Marquina M et al (2009) An imbalance in Akt/mTOR is involved in the apoptotic and acantholytic processes in a mouse model of pemphigus vulgaris. Exp Dermatol 18:771–780

    Article  PubMed  CAS  Google Scholar 

  46. Roskoski R Jr (2004) Src protein-tyrosine kinase structure and regulation. Biochem Biophys Res Commun 324:1155–1164

    Article  PubMed  CAS  Google Scholar 

  47. Sato M, Aoyama Y, Kitajima Y (2000) Assembly pathway of desmoglein 3 to desmosomes and its perturbation by pemphigus vulgaris-IgG in cultured keratinocytes, as revealed by time-lapsed labeling immunoelectron microscopy. Lab Investig 80:1583–1592

    Article  PubMed  CAS  Google Scholar 

  48. Seishima M, Iwasaki-Bessho Y, Itoh Y et al (1999) Phosphatidylcholine-specific phospholipase C, but not phospholipase D, is involved in pemphigus IgG-induced signal transduction. Arch Dermatol Res 291:606–613

    Article  PubMed  CAS  Google Scholar 

  49. Spindler V, Heupel WM, Efthymiadis A et al (2009) Desmocollin 3-mediated binding is crucial for keratinocyte cohesion and is impaired in pemphigus. J Biol Chem 284:30556–30564

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Spindler V, Rotzer V, Dehner C et al (2013) Peptide-mediated desmoglein 3 crosslinking prevents pemphigus vulgaris autoantibody-induced skin blistering. J Clin Investig 123:800–811

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Spindler V, Waschke J (2014) Desmosomal cadherins and signaling: lessons from autoimmune disease. Cell Commun Adhes 21:77–84

    Article  PubMed  CAS  Google Scholar 

  52. Takeichi M (1995) Morphogenetic roles of classic cadherins. Curr Opin Cell Biol 7:619–627

    Article  PubMed  CAS  Google Scholar 

  53. Thomas SM, Brugge JS (1997) Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 13:513–609

    Article  PubMed  CAS  Google Scholar 

  54. Todorovic V, Koetsier JL, Godsel LM et al (2014) Plakophilin 3 mediates Rap1-dependent desmosome assembly and adherens junction maturation. Mol Biol Cell 25:3749–3764

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Troyanovsky RB, Klingelhofer J, Troyanovsky S (1999) Removal of calcium ions triggers a novel type of intercadherin interaction. J Cell Sci 112(Pt 23):4379–4387

    PubMed  CAS  Google Scholar 

  56. Tsang SM, Brown L, Gadmor H et al (2012) Desmoglein 3 acting as an upstream regulator of Rho GTPases, Rac-1/Cdc42 in the regulation of actin organisation and dynamics. Exp Cell Res 318:2269–2283

    Article  PubMed  Google Scholar 

  57. Tsang SM, Brown L, Lin K et al (2012) Non-junctional human desmoglein 3 acts as an upstream regulator of Src in E-cadherin adhesion, a pathway possibly involved in the pathogenesis of pemphigus vulgaris. J Pathol 227:81–93

    Article  PubMed  CAS  Google Scholar 

  58. Tsang SM, Liu L, Teh MT et al (2010) Desmoglein 3, via an interaction with E-cadherin, is associated with activation of Src. PLoS ONE 5:e14211

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Tsukita S, Oishi K, Akiyama T et al (1991) Specific proto-oncogenic tyrosine kinases of src family are enriched in cell-to-cell adherens junctions where the level of tyrosine phosphorylation is elevated. J Cell Biol 113:867–879

    Article  PubMed  CAS  Google Scholar 

  60. Tsunoda K, Ota T, Aoki M et al (2003) Induction of pemphigus phenotype by a mouse monoclonal antibody against the amino-terminal adhesive interface of desmoglein 3. J Immunol 170:2170–2178

    Article  PubMed  CAS  Google Scholar 

  61. Vasioukhin V, Bowers E, Bauer C et al (2001) Desmoplakin is essential in epidermal sheet formation. Nat Cell Biol 3:1076–1085

    Article  PubMed  CAS  Google Scholar 

  62. Vielmuth F, Hartlieb E, Kugelmann D et al (2015) Atomic force microscopy identifies regions of distinct desmoglein 3 adhesive properties on living keratinocytes. Nanomed Nanotechnol Biol Med 11:511–520

    Article  CAS  Google Scholar 

  63. Waschke J (2008) The desmosome and pemphigus. Histochem Cell Biol 130:21–54

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Waschke J, Spindler V (2014) Desmosomes and extradesmosomal adhesive signaling contacts in pemphigus. Med Res Rev 34:1127–1145

    Article  PubMed  CAS  Google Scholar 

  65. Wheelock MJ, Jensen PJ (1992) Regulation of keratinocyte intercellular junction organization and epidermal morphogenesis by E-cadherin. J Cell Biol 117:415–425

    Article  PubMed  CAS  Google Scholar 

  66. Yap AS, Brieher WM, Gumbiner BM (1997) Molecular and functional analysis of cadherin-based adherens junctions. Annu Rev Cell Dev Biol 13:119–146

    Article  PubMed  CAS  Google Scholar 

  67. Yin T, Green KJ (2004) Regulation of desmosome assembly and adhesion. Semin Cell Dev Biol 15:665–677

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Yasushi Hanakawa for providing the pEGFP-N1-Ecad construct. Furthermore, we thank Veronika Heimbach, Martina Hitzenbichler, Claudia Meyerhofer, Linda Jakobi and Andrea Wehmeyer for their skillful technical assistance. This work was supported by Deutsche Forschungsgemeinschaft Grant DFG SP1300/1-1 and 1-3 (to V.S. and J.W.)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Volker Spindler or Jens Waschke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2015_1977_MOESM1_ESM.tif

S1 Src signaling is inhibited by specific c-Src inhibitor pp2. (a) Pp2 treatment for 2 h prevented EGF-mediated loss of cell cohesion, whereas pp2 alone had no effect compared to controls (n = 6, *p < 0.05). (b) In Western blot analysis, pp2 treatment for 2 h blocked EGF-induced activation of EGFR (n = 3) (TIFF 7917 kb)

18_2015_1977_MOESM2_ESM.tif

S2 Efficiency of the Ca2+ switch assay. Staining of Dsg3 (purple), together with antibodies against the intracellular (clone 36; green) and the extracellular domain of E-cadherin (ECCD-2; red) served to monitor the efficiency of Ca2+ depletion and following repletion. ECCD-2 detects homophilic binding of E-cadherin [11] and thus in controls, Dsg3 and the two antibodies against E-cadherin co-localized at the cell cortex. After 1 h of Ca2+ depletion ECCD-2 staining disappeared and both Dsg3 and E-cadherin (clone 36) fluorescence signals were weakened. Replacement of Ca2+ (repletion) for 5 h restored nearby completely localization of Dsg3 and E-cadherin at the cell membrane (n = 3) (TIFF 7657 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rötzer, V., Hartlieb, E., Vielmuth, F. et al. E-cadherin and Src associate with extradesmosomal Dsg3 and modulate desmosome assembly and adhesion. Cell. Mol. Life Sci. 72, 4885–4897 (2015). https://doi.org/10.1007/s00018-015-1977-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1977-0

Keywords

Navigation