Skip to main content
Log in

Autism Biomarkers: Challenges, Pitfalls and Possibilities

  • Commentary
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

Network perspectives, in their emphasis on components and their interactions, might afford the best approach to the complexities of the ASD realm. Categorical approaches are unlikely to be fruitful as one should not expect to find a single or even predominant underlying cause of autism behavior across individuals. It is possible that the complex, highly interactive, heterogeneous and individualistic nature of the autism realm is intractable in terms of identifying clinically useful biomarker tests. It is hopeful from an emergenic perspective that small corrective changes in a single component of a deleterious network/configuration might have large beneficial consequences on developmental trajectories and in later treatment. It is suggested that the relationship between ASD and intellectual disability might be fundamentally different in single-gene versus nonsyndromic ASD. It is strongly stated that available biomarker “tests” for autism/ASD will do more harm than good. Finally, the serotonin–melatonin-oxidative stress-placental intersection might be an especially fruitful area of biological investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abyzov, A., Mariani, J., Palejev, D., Zhang, Y., Haney, M. S., Tomasini, L., et al. (2012). Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature, 492, 438–442.

    PubMed  PubMed Central  Google Scholar 

  • American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed., text rev.). Washington, DC: American Psychiatric Publishing.

  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.

    Google Scholar 

  • Anagnostou, E., Soorya, L., Brian, J., Dupuis, A., Mankad, D., Smile, S., et al. (2014). Intranasal oxytocin in the treatment of autism spectrum disorders: A review of literature and early safety and efficacy data in youth. Brain Research. doi:10.1016/j.brainres.2014.01.049.

    PubMed  Google Scholar 

  • Anderson, G. M. (2008). The potential role for emergence in autism. Autism Research, 1, 18–30.

  • Anderson, B. (2001). G as a consequence of shared genes. Intelligence, 29, 367–371.

    Google Scholar 

  • Anderson, G. M. (2002). Genetics of childhood disorders: XLV. Autism, Part 4: Serotonin in autism. Journal of the American Academy of Child and & Adolescent Psychiatry, 41, 1513–1516.

    Google Scholar 

  • Anderson, G. M. (2009). The role for emergence and submergence in autism. 4th Wales’ International Autism Conference www.awares.org/conferences/show_paper.asp?section=000100010001&conferenceCode= 000200110017&id=249&full_paper=1,2009 (“Autism2009”, on-line conference, keynote paper).

  • Anderson, G. M. (2012). Twin studies in autism: What might they say about genetic and environmental influences. Journal of Autism and Developmental Disorders, 42, 1526–1527.

    PubMed  Google Scholar 

  • Anderson, G. M. (2014). Biochemical biomarkers in autism, chap 19. In Volkmar et al. (Eds.), Handbook of autism and pervasive developmental disorders, 4th edition, pp. 457–481. Hoboken, NJ: Wiley.

  • Anderson, G. M., Cook, E. H, Jr, & Blakely, R. D. (2009). Serotonin rising. New England Journal of Medicine, 360, 2580.

    PubMed  Google Scholar 

  • Anderson, G. M., Hertzig, M. E., & McBride, P. A. (2012). Platelet-poor plasma serotonin in autism. Journal of autism and developmental disorders. Journal of Autism and Developmental Disorders, 42, 1510–1514.

    PubMed  Google Scholar 

  • Anderson, G. M., Horne, W. C., Chatterjee, D., & Cohen, D. J. (1990). The hyperserotonemia of autism. Annals of the New York Academy of Sciences, 600, 331–342.

    PubMed  Google Scholar 

  • Anderson, G. M., Jacobs-Stannard, A., Chawarska, K., Volkmar, F. R., & Kliman, H. J. (2007). Placental trophoblast inclusions in autism spectrum disorder. Biological Psychiatry, 61(4), 487–491.

    PubMed  Google Scholar 

  • Anderson, J. S., Nielsen, J. A., Froehlich, A. L., DuBray, M. B., Druzgal, T. J., Cariello, A. N., et al. (2011). Functional connectivity magnetic resonance imaging classification of autism. Brain, 134, 3742–3754.

    PubMed  Google Scholar 

  • Anderson, G. M., & Stahl, S. S. (2014). Two proposed early biomarker tests of ASD: More harm than good. Journal of Autism and Developmental Disorders, 44, 988–989.

    PubMed  Google Scholar 

  • Baganz, N. L., & Blakely, R. D. (2013). A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chemical Neuroscience, 4, 48–63.

    PubMed  PubMed Central  Google Scholar 

  • Barabási, A. L., Gulbahce, N., & Loscalzo, J. (2011). Network medicine: A network-based approach to human disease. Nature Reviews Genetics, 12, 56–68.

    PubMed  PubMed Central  Google Scholar 

  • Bonnin, A., Goeden, N., Chen, K., Wilson, M. L., King, J., Shih, J. C., et al. (2011). A transient placental source of serotonin for the fetal forebrain. Nature, 472, 347–350.

    PubMed  PubMed Central  Google Scholar 

  • Bonnin, A., & Levitt, P. (2012). Placental source for 5-HT that tunes fetal brain development. Neuropsychopharmacology, 7, 299–300.

    Google Scholar 

  • Borsboom, D. (2008). Psychometric perspectives on diagnostic systems. Journal of Clinical Psychology, 64, 1089–1108.

    PubMed  Google Scholar 

  • Braunschweig, D., Krakowiak, P., Duncanson, P., Boyce, R., Hansen, R. L., Ashwood, P., et al. (2013). Autism-specific maternal autoantibodies recognize critical proteins in developing brain. Translational Psychiatry, 3, e277.

    PubMed  PubMed Central  Google Scholar 

  • Bruder, C. E., Piotrowski, A., Gijsbers, A. A., Andersson, R., Erickson, S., Diaz de Ståhl, T., et al. (2008). Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. American Journal of Human Genetics, 82, 763–771.

    PubMed  PubMed Central  Google Scholar 

  • Bubenik, G. A. (2002). Gastrointestinal melatonin: Localization, function, and clinical relevance. Digestive Diseases and Sciences, 47, 2336–2348.

    PubMed  Google Scholar 

  • Buchanan, A. V., Weiss, K. M., & Fullerton, S. M. (2006). Dissecting complex disease: The quest for the Philosopher’s Stone? International Journal of Epidemiology, 35, 562–571.

    PubMed  Google Scholar 

  • Bunge, M. (2003). Emergence and convergence: Qualitative novelty and the unity of knowledge. Toronto: University of Toronto Press.

    Google Scholar 

  • Carpentier, P. A., Haditsch, U., Braun, A. E., Cantu, A. V., Moon, H. M., Price, R. O., et al. (2013). Stereotypical alterations in cortical patterning are associated with maternal illness-induced placental dysfunction. The Journal of Neuroscience, 33, 16874–16888.

    PubMed  PubMed Central  Google Scholar 

  • Carter, M. T., & Scherer, S. W. (2013). Autism spectrum disorder in the genetics clinic: A review. Clinical Genetics, 83, 399–407.

    PubMed  Google Scholar 

  • Cicchetti, D., & Dawson, G. (2002). Multiple levels of analysis. Development and Psychopathology, 14, 417–420.

    PubMed  Google Scholar 

  • Cicchetti, D., & Toth, S. L. (2009). The past achievements and future promises of developmental psychopathology: The coming of age of a discipline. Journal of Child Psychology and Psychiatry, 50, 16–25.

    PubMed  PubMed Central  Google Scholar 

  • Cook, E. H. (1990). Autism: Review of neurochemical investigation. Synapse (New York, NY), 6, 292–308.

    Google Scholar 

  • Cramer, A. O., Waldorp, L. J., van der Maas, H. L., & Borsboom, D. (2010a). Comorbidity: A network perspective. Behavioral and Brain Sciences, 33, 137–193.

    PubMed  Google Scholar 

  • Cramer, A. O., Waldorp, L. J., van der Maas, H. L., & Borsboom, D. (2010b). Complex realities require complex theories: Refining and extending the network approach to mental disorders. Behavioral and Brain Sciences, 33, 178–193.

    Google Scholar 

  • Cuccaro, M. L., Tuchman, R. F., Hamilton, K. L., Wright, H. H., Abramson, R. K., Haines, J. L., et al. (2012). Exploring the relationship between autism spectrum disorder and epilepsy using latent class cluster analysis. Journal of Autism and Developmental Disorders, 42, 1630–1641.

    PubMed  Google Scholar 

  • Dadds, M. R., MacDonald, E., Cauchi, A., Williams, K., Levy, F., & Brennan, J. (2014). Nasal oxytocin for social deficits in childhood autism: A randomized controlled trial. Journal of Autism and Developmental Disorders, 44, 521–531.

    PubMed  Google Scholar 

  • Dawson, G., Estes, A., Munson, J., Schellenberg, G., Bernier, R., & Abbott, R. (2007). Quantitative assessment of autism symptom-related traits in probands and parents: Broader phenotype autism symptom scale. Journal of Autism and Developmental Disorders, 37, 523–536.

    PubMed  Google Scholar 

  • Dudley, E., Hässler, F., & Thome, J. (2011). Profiling for novel proteomics biomarkers in neurodevelopmental disorders. Expert Review of Proteomics, 8, 127–136.

    PubMed  Google Scholar 

  • Feldman, R., Gordon, I., & Zagoory-Sharon, O. (2011). Maternal and paternal plasma, salivary, and urinary oxytocin and parent-infant synchrony: Considering stress and affiliation components of human bonding. Developmental Science, 14, 752–761.

    PubMed  Google Scholar 

  • Fisher, S. E. (2006). Tangled webs: Tracing the connections between genes and cognition. Cognition, 101, 270–279.

    PubMed  Google Scholar 

  • Flood, Z. C., Engel, D. L., Simon, C. C., Negherbon, K. R., Murphy, L. J., Tamavimok, W., et al. (2012). Brain growth trajectories in mouse strains with central and peripheral serotonin differences: Relevance to autism models. Neuroscience, 210, 286–295.

    PubMed  Google Scholar 

  • Frustaci, A., Neri, M., Cesario, A., Adams, J. B., Domenici, E., Dalla Bernardina, B., et al. (2012). Oxidative stress-related biomarkers in autism: Systematic review and meta-analyses. Free Radical Biology & Medicine, 52, 2128–2141.

    Google Scholar 

  • Fukumoto, T., Kema, I. P., & Levin, M. (2005). Serotonin signaling is a very early step in patterning of the left-right axis in chick and frog embryos. Current Biology, 15, 794–803.

    PubMed  Google Scholar 

  • Gabriele, S., Sacco, R., & Persico, A. M. (2014). Blood serotonin levels in autism spectrum disorder: A systematic review and meta-analysis. European Neuropsychopharmacology, 24, 919–929.

    PubMed  Google Scholar 

  • Galano, A., Tan, D. X., & Reiter, R. J. (2011). Melatonin as a natural ally against oxidative stress: A physicochemical examination. Journal of Pineal Research, 51, 1–16.

    PubMed  Google Scholar 

  • Gaugler, T., Klei, L., Sanders, S. J., Bodea, C. A., Goldberg, A. P., Lee, A. B., et al. (2014). Most genetic risk for autism resides with common variation. Nature Genetics, 46, 881–885.

    PubMed  PubMed Central  Google Scholar 

  • Gesundheit, B., Rosenzweig, J. P., Naor, D., Lerer, B., Zachor, D. A., Procházka, V., et al. (2013). Immunological and autoimmune considerations of autism spectrum disorders. Journal of Autoimmunity, 44, 1–7.

    PubMed  Google Scholar 

  • Gottlieb, G. (2007). Probabilistic epigenesis. Developmental Science, 10, 1–11.

    PubMed  Google Scholar 

  • Hammock, E. A. (2014). Developmental perspectives on oxytocin and vasopressin. Neuropsychopharmacology. doi:10.1038/npp.2014.120.

    PubMed  Google Scholar 

  • Happe, F., Ronald, A., & Plomin, R. (2006). Time to give up on a single explanation for autism. Nature Neuroscience, 9, 1218–1220.

    PubMed  Google Scholar 

  • Haque, F. N., Gottesman, I. I. & Wong, A. H. (2009). Not really identical: Epigenetic differences in monozygotic twins and implications for twin studies in psychiatry. American Journal of Medical Genetic C Seminars in Medical Genetics, 15; 151C(2):136–41.

  • Hoge, E. A., Pollack, M. H., Kaufman, R. E., Zak, P. J., & Simon, N. M. (2008). Oxytocin levels in social anxiety disorder. CNS Neuroscience & Therapeutics, 14, 165–170.

    Google Scholar 

  • Hu, V. W. (2012). Subphenotype-dependent disease markers for diagnosis and personalized treatment of autism spectrum disorders. Disease Markers, 33, 277–288.

    PubMed  PubMed Central  Google Scholar 

  • Insel, T. R. (2010). The challenge of translation in social neuroscience: A review of oxytocin, vasopressin, and affiliative behavior. Neuron, 65, 768–779.

    PubMed  PubMed Central  Google Scholar 

  • Jack, A., Connelly, J. J., & Morris, J. P. (2012). DNA methylation of the oxytocin receptor gene predicts neural response to ambiguous social stimuli. Frontiers in Human Neuroscience, 6, 280.

    PubMed  PubMed Central  Google Scholar 

  • Jacob, S., Brune, C. W., Carter, C. S., Leventhal, B. L., Lord, C., & Cook, E. H, Jr. (2007). Association of the oxytocin receptor gene (OXTR) in Caucasian children and adolescents with autism. Neuroscience Letters, 417, 6–9.

    PubMed  PubMed Central  Google Scholar 

  • Jansen, L. M., Gispen-de Wied, C. C., Wiegant, V. M., Westenberg, H. G., Lahuis, B. E., & van Engeland, H. (2006). Autonomic and neuroendocrine responses to a psychosocial stressor in adults with autistic spectrum disorder. Journal of Autism and Developmental Disorders, 36, 891–899.

    PubMed  Google Scholar 

  • Jones, W., & Klin, A. (2013). Attention to eyes is present but in decline in 2-6-month-old infants later diagnosed with autism. Nature, 504, 427–431.

    PubMed  PubMed Central  Google Scholar 

  • Junaid, M. A., Kowal, D., Barua, M., Pullarkat, P. S., Sklower Brooks, S., & Pullarkat, R. K. (2004). Proteomic studies identified a single nucleotide polymorphism in glyoxalase I as autism susceptibility factor. American Journal of Medical Genetics Part A, 131, 11–17.

    PubMed  PubMed Central  Google Scholar 

  • Kirsten, T. B., Lippi, L. L., Bevilacqua, E., & Bernardi, M. M. (2013). LPS exposure increases maternal corticosterone levels, causes placental injury and increases IL-1Β levels in adult rat offspring: relevance to autism. PLoS One, 8, e82244.

    PubMed  PubMed Central  Google Scholar 

  • Kong, S. W., Collins, C. D., Shimizu-Motohashi, Y., Holm, I. A., Campbell, M. G., Lee, I. H., et al. (2012). Characteristics and predictive value of blood transcriptome signature in males with autism spectrum disorders. PLoS One, 7, e49475.

    PubMed  PubMed Central  Google Scholar 

  • Losh, M., & Piven, J. (2007). Social-cognition and the broad autism phenotype: Identifying genetically meaningful phenotypes. Journal of Child Psychology Psychiatry, 48, 105–112.

  • Lyalina, S., Percha, B., LePendu, P., Iyer, S. V., Altman, R. B., & Shah, N. H. (2013). Identifying phenotypic signatures of neuropsychiatric disorders from electronic medical records. Journal of the American Medical Informatics Association, 20, e297–305.

  • Lykken, D. T. (2006). The mechanism of emergenesis. Genes, Brain & Behavior, 5, 306–310.

  • Maurer, M. H. (2012). Genomic and proteomic advances in autism research. Electrophoresis, 33, 3653–3658.

    PubMed  Google Scholar 

  • Maxwell, C. R., Parish-Morris, J., Hsin, O., Bush, J. C., & Schultz, R.T. (2013). The broad autism phenotype predicts child functioning in autism spectrum disorders. Journal of Neurodevelopmental Disorders, 5, 25.

  • McBride, P. A., Anderson, G. M., Hertzig, M. E., Snow, M. E., Thompson, S. M., Khait, V. D., et al. (1998). Effects of diagnosis, race, and pubertal status on platelet serotonin levels in autism and mental retardation. Journal of the American Academy of Child and Adolescent Psychiatry, 37, 767–779.

    PubMed  Google Scholar 

  • McBride, P. A., Anderson, G. M., & Shapiro, T. (1996). Autism research. Bringing together approaches to pull apart the disorder. Archives of General Psychiatry, 53, 980–983.

    PubMed  Google Scholar 

  • McNamara, I. M., Borella, A. W., Bialowas, L. A., & Whitaker-Azmitia, P. M. (2008). Further studies in the developmental hyperserotonemia model (DHS) of autism: Social, behavioral and peptide changes. Brain Research, 1189, 203–214.

    PubMed  Google Scholar 

  • Mizejewski, G. J. (2012). Biomarker testing for suspected autism spectrum disorder in early childhood: Is such testing now feasible? Biomark Medicine, 6, 503–506.

    Google Scholar 

  • Moss, J., & Howlin, P. (2009). Autism spectrum disorders in genetic syndromes: Implications for diagnosis, intervention and understanding the wider autism spectrum disorder population. Journal of Intellectual Disability Research, 53, 852–873.

    PubMed  Google Scholar 

  • Mulder, E. J., Anderson, G. M., Kema, I. P., de Bildt, A., van Lang, N. D., den Boer, J. A., et al. (2004). Platelet serotonin levels in pervasive developmental disorders and mental retardation: Diagnostic group differences, within-group distribution, and behavioral correlates. Journal of the American Academy of Child and Adolescent Psychiatry, 43, 491–499.

    PubMed  Google Scholar 

  • Nagasawa, M., Kikusui, T., Onaka, T., & Ohta, M. (2009). Dog’s gaze at its owner increases owner’s urinary oxytocin during social interaction. Hormones and Behavior, 55, 434–441.

    PubMed  Google Scholar 

  • Naples, A., Katz, L., & Grigorenko, E. L. (2012). Lexical decision as an endophenotype for reading comprehension: An exploration of an association. Development and Psychopathology, 24, 1345–1360.

    PubMed  PubMed Central  Google Scholar 

  • Onore, C., Careaga, M., & Ashwood, P. (2012). The role of immune dysfunction in the pathophysiology of autism. Brain, Behavior, and Immunity, 26, 383–392.

    PubMed  PubMed Central  Google Scholar 

  • Parker, K. J., Garner, J. P., Libove, R. A.., Hyde, S. A., Hornbeak, K. B., Carson, D. S., Liao, C. P., Phillips, J. M., Hallmayer, J. F., & Hardan AY. (2014). Plasma oxytocin concentrations and OXTR polymorphisms predict social impairments in children with and without autism spectrum disorder. Proceedings of the National Academy of Sciences. 2014 Aug 4. pii: 201402236. [Epub ahead of print].

  • Pierce, K., Conant, D., Hazin, R., Stoner, R., & Desmond, J. (2011). Preference for geometric patterns early in life as a risk factor for autism. Archives of General Psychiatry, 68, 101–109.

    PubMed  Google Scholar 

  • Posey, D. J., Erickson, C. A., & McDougle, C. J. (2008). Developing drugs for core social and communication impairment in autism. Child and Adolescent Psychiatric Clinics of North America, 17, 787–801.

    PubMed  PubMed Central  Google Scholar 

  • Preti, A., Melis, M., Siddi, S., Vellante, M., Doneddu, G., & Fadda, R. (2004). Oxytocin and autism: A systematic review of randomized controlled trials. Journal of Child and Adolescent Psychopharmacology, 24, 54–68.

    Google Scholar 

  • Purcell, A. E., Jeon, O. H., Zimmerman, A. W., Blue, M. E., & Pevsner, J. (2001). Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology, 57, 1618–1628.

    PubMed  Google Scholar 

  • Ratajczak, H. V. (2011). Theoretical aspects of autism: Biomarkers–a review. Journal of Immunotoxicology, 8, 80–94.

    PubMed  Google Scholar 

  • Reiter, R. J., Tan, D. X., Tamura, H., Cruz, M. H., & Fuentes-Broto, L. (2014). Clinical relevance of melatonin in ovarian and placental physiology: A review. Gynecological Endocrinology, 30, 83–89.

    PubMed  Google Scholar 

  • Richters, J. E. (1997). The Hubble hypothesis and the developmentalist’s dilemma. Deveploment and Psychopathol, 9, 193–199.

    Google Scholar 

  • Ross, H. E., & Young, L. J. (2009). Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Frontiers in Neuroendocrinology, 30, 534–547.

    PubMed  PubMed Central  Google Scholar 

  • Rossi, J., Newschaffer, C., & Yudell, M. (2013). Autism spectrum disorders, risk communication, and the problem of inadvertent harm. Kennedy Institute of Ethics Journal, 23, 105–138.

    PubMed  Google Scholar 

  • Rossignol, D. A., & Frye, R. E. (2011). Melatonin in autism spectrum disorders: A systematic review and meta-analysis. Developmental Medicine and Child Neurology, 53, 783–792.

    PubMed  Google Scholar 

  • Ruggeri, B., Sarkans, U., Schumann, G., & Persico, A. M. (2014). Biomarkers in autism spectrum disorder: The old and the new. Psychopharmacology (Berl), 231, 1201–1216.

    Google Scholar 

  • Rutter, M. L. (2011). Progress in understanding autism: 2007–2010. Journal of Autism and Developmental Disorders, 41, 395–404.

    PubMed  Google Scholar 

  • Rutter, M. L. (2014). Genetics of autism spectrum disorders. in Handbook of Autism and Pervasive Developmental Disorders, 4th edition, Volkmar et al. eds., J. Wiley & Sons, Hoboken, NJ.

  • Salafia, C. M, Platt, C, Girardi, T, Shah, R, Merz, G., & Misra, D. P. (2014). Placental structure in ASD: Does the placenta mirror the diagnosis? Abstract # 17578, 2014 International Meeting for Autism Research, Atlanta, GA, May 14–17, 2014.

  • Scahill, L., & Anderson, G. M. (2010). Is ecstasy an empathogen? Biological Psychiatry, 68, 1082–1083.

    PubMed  PubMed Central  Google Scholar 

  • Schain, R. J., Freedman, D. X. (1961). Studies on 5-hydroxyindole metabolism in autistic and other mentally retarded children. Journal of Pediatrics, 58, 315–320.

    PubMed  Google Scholar 

  • Skuse, D. H. (2007). Rethinking the nature of genetic vulnerability to autistic spectrum disorders. Trends in Genetics, 23, 387–395.

    PubMed  Google Scholar 

  • Skuse, D. H., Gallagher, L. (2011). Genetic influences on social cognition. Pediatric Research, 69(5 Pt 2), 85R–91R.

    PubMed  Google Scholar 

  • Spencer, J. P., Perone, S., Buss, A. T. (2011). Twenty years and going strong: A dynamic systems revolution in motor and cognitive development. Child Development Perspectives, 5, 260–266.

    PubMed  PubMed Central  Google Scholar 

  • Srivastava, A. K., Schwartz, C. E. (2014). Intellectual disability and autism spectrum disorders: Causal genes and molecular mechanisms. Neuroscience and Biobehavioral Reviews. doi:10.1016/j.neubiorev.2014.02.015.

    PubMed  PubMed Central  Google Scholar 

  • Stromswold, K. (2006). Why aren’t identical twins linguistically identical? Cognition, 101, 333–384.

    PubMed  Google Scholar 

  • Sucksmith, E., Roth, I., & Hoekstra, R. A. (2011). Autistic traits below the clinical threshold: Re-examining the broader autism phenotype in the 21st century. Neuropsychology Review, 21, 360–389.

  • Tordjman, S., Najjar, I., Bellissant, E., Anderson, G. M., Barburoth, M., Cohen, D., et al. (2013). Advances in the research of melatonin in autism spectrum disorders: Literature review and new perspectives. International Journal of Molecular Sciences, 14, 20508–20542.

    PubMed  PubMed Central  Google Scholar 

  • van der Maas, H. L., Dolan, C. V., Grasman, R. P., Wicherts, J. M., Huizenga, H. M., Raijmakers, M. E. (2006). A dynamical model of general intelligence: The positive manifold of intelligence by mutualism. Psychological Review, 113, 842–861.

    PubMed  Google Scholar 

  • van Praag, H. M. (2003). Itinerary: Concerning the professional and spiritual objectives of my life. Medical Humanities, 29, 89–96.

    PubMed  Google Scholar 

  • Veenstra-VanderWeele, J., Blakely, R. D. (2012). Networking in autism: Leveraging genetic, biomarker and model system findings in the search for new treatments. Neuropsychopharmacology, 37, 196–212.

    PubMed  PubMed Central  Google Scholar 

  • Veenstra-VanderWeele, J., Muller, C. L., Iwamoto, H., Sauer, J. E., Owens, W. A., Shah, C. R., et al. (2012). Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior. Proceedings of the National Academy of Sciences USA, 109, 5469–5474.

    Google Scholar 

  • Velasquez, J. C., Goeden, N., & Bonnin, A. (2013). Placental serotonin: Implications for the developmental effects of SSRIs and maternal depression. Frontiers in Cellular Neuroscience, 7, 47.

    PubMed  PubMed Central  Google Scholar 

  • Villagonzalo, K. A., Dodd, S., Dean, O., Gray, K., Tonge, B., & Berk, M. (2010). Oxidative pathways as a drug target for the treatment of autism. Expert Opinion on Therapeutic Targets, 14, 1301–1310.

    PubMed  Google Scholar 

  • Voineagu, I. (2012). Gene expression studies in autism: Moving from the genome to the transcriptome and beyond. Neurobiology of Disease, 45, 69–75.

    PubMed  Google Scholar 

  • Volkmar, F. R., Reichow, B., Westphal, A.., & Mandell, D.S. (2014). Autism and the autism spectrum: Diagnostic concepts, chap 1, pp. 3–27, in Handbook of Autism and Pervasive Developmental Disorders, 4th edition, ed. by Volkmar et al, J. Wiley & Sons, Hoboken, NJ.

  • Wald, N. J., Hackshaw, A. K., & Frost, C. D. (1999). When can a risk factor be used as a worthwhile screening test?. BMJ, 319(7224), 1562–1565.

    PubMed  PubMed Central  Google Scholar 

  • Walker, C. K., Anderson, K. W., Milano, K. M., Ye, S., Tancredi, D. J., & Pessah I. N., et al. (2013). Hertz-Picciotto I, Kliman HJ. Trophoblast inclusions are significantly increased in the placentas of children in families at risk for autism. Biol Psychiatry, 74, 204–11.

  • Walsh, P., Elsabbagh, M., Bolton, P., & Singh, I. (2011). In search of biomarkers for autism: Scientific, social and ethical challenges. Nature Reviews Neuroscience, 12, 603–612.

    PubMed  Google Scholar 

  • Wang, L., Angley, M. T., Gerber, J. P., & Sorich, M. J. (2011). A review of candidate urinary biomarkers for autism spectrum disorder. Biomarkers, 16, 537–552.

    PubMed  Google Scholar 

  • Wang, H., Chen, C., & Fushing, H. (2012). Extracting multiscale pattern information of fMRI based functional brain connectivity with application on classification of autism spectrum disorders. PLoS One, 7, e45502.

    PubMed  PubMed Central  Google Scholar 

  • Wing, L., & Wing, J. K. (1971). Multiple impairments in early childhood autism. Journal of Autism & Childhood Schizophrenia, 1, 256–266.

    Google Scholar 

  • Yerys, B. E., & Pennington, B. F. (2011). How do we establish a biological marker for a behaviorally defined disorder? Autism as a test case. Autism Research, 4, 239–241.

    PubMed  Google Scholar 

  • Yordanova, J., Kolev, V., Kirov, R., & Rothenberger, A. (2010). Comorbidity in the context of neural network properties. Behavioral and Brain Sciences, 33, 176–177.

    PubMed  Google Scholar 

  • Young, J. G., Kavanagh, M. E., Anderson, G. M., Shaywitz, B. A., & Cohen, D. J. (1982). Clinical neurochemistry of autism and associated disorders. Journal of Autism and Developmental Disorders, 12, 147–165.

    PubMed  Google Scholar 

  • Young, S. N., Moskowitz, D. S., & aan het Rot, M. (2014). Possible role of more positive social behaviour in the clinical effect of antidepressant drugs. Journal of Psychiatry and Neuroscience, 39, 60–65.

    PubMed  PubMed Central  Google Scholar 

  • Yuwiler, A., Geller, A., & Ritvo, E. (1985). Biochemical studies of autism. In E. Lajtha (Ed.), Handbook of neurochemistry (pp. 671–691). New York: Plenum.

    Google Scholar 

Download references

Acknowledgments

We thank James McPartland, PhD, Sherin Stahl, PhD, and an anonymous reviewer for their helpful comments on the manuscript. This work was supported by the Mindworks Charitable Lead Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George M. Anderson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, G.M. Autism Biomarkers: Challenges, Pitfalls and Possibilities. J Autism Dev Disord 45, 1103–1113 (2015). https://doi.org/10.1007/s10803-014-2225-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-014-2225-4

Keywords

Navigation