Skip to main content
Log in

Treatment Heterogeneity in Asthma

Genetics of Response to Leukotriene Modifiers

  • Respiratory Disorders
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Despite advances in treatment, asthma continues to be a significant health and economic burden. Although asthma cannot be cured, several drugs, including β2 agonists, corticosteroids, and leukotriene (LT) modifiers, are well tolerated and effective in minimizing symptoms, improving lung function, and preventing exacerbations. However, inter-patient variability in response to asthma drugs limits their effectiveness. It has been estimated that 60–80% of this inter-patient variability may be attributable to genetic variation. LT modifiers, in particular, have been associated with heterogeneity in response. These drugs exert their action by inhibiting the activity of cysteinyl leukotrienes (CysLTs), which are potent bronchoconstrictors and pro-inflammatory agents. Two classes of LT modifiers are 5-lipoxygenase (ALOX5) inhibitors (zileuton) and leukotriene receptor antagonists (LTRAs) [montelukast, pranlukast, and zarfirlukast]. LT modifiers can be used as alternatives to low-dose inhaled corticosteroids (ICS) in mild persistent asthma, as add-on therapy to low- to medium-dose ICS in moderate persistent asthma, and as add-on to high-dose ICS and a long-acting β2 agonist in severe persistent asthma. At least six genes encode key proteins in the LT pathway: arachidonate 5-lipoxygenase (ALOX5), ALOX5 activating protein (ALOX5AP [FLAP]), leukotriene A4 hydrolase (LTA4H), LTC4 synthase (LTC4S), the ATP-binding cassette family member ABCC1 (multidrug resistance protein 1 [MRP1]), and cysteinyl leukotriene receptor 1 (CYSLTR1). Studies have reported that genetic variation in ALOX5, LTA4H, LTC4S, and ABCC1 influences response to LT modifiers. Plasma concentrations of LTRAs vary considerably among patients. Physio-chemical characteristics make it likely that membrane efflux and uptake transporters mediate the absorption of LTRAs into the systemic circulation following oral administration. Genes that encode efflux and uptake transport proteins harbor many variants that could influence the pharmacokinetics, and particularly the bioavailability, of LTRAs, and could contribute to heterogeneity in response. In the future, large, well designed clinical trials studying the pharmacogenetics of LT modifiers in diverse populations are warranted to determine whether a genetic signature can be developed that will accurately predict which patients will respond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Fig. 1
Table II
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Sly RM. Decreases in Hispanic and non-Hispanic asthma mortality. Ann Allergy Asthma Immunol 2006; 96: 76–9

    Article  PubMed  Google Scholar 

  2. American Lung Association. Trends in asthma morbidity and mortality [online]. Available from URL: http://www.lungusa.org/atf/cf/%7B7A8D42C2-FC-CA-4604-8ADE-7F5D5E762256%7D/ASTHMA1.PDF [Accessed 2007 Mar 2]

  3. Drazen JM, Yandava CN, Dube L, et al. Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nat Genet 1999; 22: 168–70

    Article  PubMed  CAS  Google Scholar 

  4. Becker KG. The common variants/multiple disease hypothesis of common complex genetic disorders. Med Hypotheses 2004; 62: 309–17

    Article  PubMed  CAS  Google Scholar 

  5. Lima JJ, Wang J. Respiratory diseases. In: American College of Clinical Pharmacy, editor. Pharmacogenomics: applications to patient care. Kansas City (MO): ACCP, 2004: 571–611

    Google Scholar 

  6. Silverman ES, Liggett SB, Gelfand EW, et al. The pharmacogenetics of asthma: a candidate gene approach. Pharmacogenetics 2001; 1: 27–37

    CAS  Google Scholar 

  7. Pignatti PF. Trends in pharmacogenomics of drugs used in the treatment of asthma. Pharmacol Res 2004; 49: 343–9

    Article  PubMed  CAS  Google Scholar 

  8. Sayers I, Hall IP. Pharmacogenetic approaches in the treatment of asthma. Curr Allergy Asthma Rep 2005; 5: 101–8

    Article  PubMed  CAS  Google Scholar 

  9. Weiss ST, Litonjua AA, Lange C, et al. Overview of the pharmacogenetics of asthma treatment. Pharmacogenomics 2006; 6: 311–26

    CAS  Google Scholar 

  10. O’Byrne PM, Parameswaran K. Pharmacological management of mild or moderate persistent asthma. Lancet 2006; 368: 794–803

    Article  PubMed  Google Scholar 

  11. Wenzel SE. The role of leukotrienes in asthma. Prostaglandins Leukot Essent Fatty Acids 2003; 69: 145–55

    Article  PubMed  CAS  Google Scholar 

  12. Sharma JN, Mohammed LA. The role of leukotrienes in the pathophysiology of inflammatory disorders: is there a case for revisiting leukotrienes as therapeutic targets? Inflammopharmacology 2006; 14: 10–6

    Article  PubMed  CAS  Google Scholar 

  13. Capra V, Thompson MD, Sala A, et al. Cysteinyl-leukotrienes and their receptors in asthma and other inflammatory diseases: critical update and emerging trends. Med Res Rev. Epub 2006 Aug 7

  14. Ramires R, Caiaffa MF, Tursi A, et al. Novel inhibitory effect on 5-lipoxygenase activity by the anti-asthma drug montelukast. Biochem Biophys Res Commun 2004; 324: 815–21

    Article  PubMed  CAS  Google Scholar 

  15. National Institutes of Health: National Heart, Lung, and Blood Institute. National Asthma Education and Prevention Program. Expert panel report: guidelines for the diagnosis and management of asthma update on selected topics 2002: NAEPP2002. J Allergy Clin Immunol 2002; 110: S142–219

    Article  Google Scholar 

  16. O’Byrne P, Bateman ED, Busse W, et al. Pocket guide for asthma management and prevention [NIH publication no. 02-3659]. Bethesda (MD): National Institutes of Health, 2005

    Google Scholar 

  17. Spector SL, Smith LJ, Glass M. Effects of 6 weeks of therapy with oral doses of ICI 204,219, a leukotriene D4 receptor antagonist, in subjects with bronchial asthma. ACCOLATE Asthma Trialists Group. Am J Respir Crit Care Med 1994; 150: 618–23

    PubMed  CAS  Google Scholar 

  18. Liu MC, Dube LM, Lancaster J. Acute and chronic effects of a 5-lipoxygenase inhibitor in asthma: a 6-month randomized multicenter trial. Zileuton Study Group. J Allergy Clin Immunol 1996; 98: 859–71

    Article  PubMed  CAS  Google Scholar 

  19. Suissa S, Dennis R, Ernst P, et al. Effectiveness of the leukotriene receptor antagonist zafirlukast for mild-to-moderate asthma: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 1997; 126: 177–83

    PubMed  CAS  Google Scholar 

  20. Reiss TF, Chervinsky P, Dockhorn RJ, et al. Montelukast, a once-daily leukotriene receptor antagonist, in the treatment of chronic asthma: a multicenter, randomized, double-blind trial. Montelukast Clinical Research Study Group. Arch Intern Med 1998; 158: 1213–20

    Article  PubMed  CAS  Google Scholar 

  21. DuBuske LM, Grossman J, Dube LM, et al. Randomized trial of zileuton in patients with moderate asthma: effect of reduced dosing frequency and amounts on pulmonary function and asthma symptoms. Zileuton Study Group. Am J Manag Care 1997; 3: 633–40

    Google Scholar 

  22. Malmstrom K, Rodriguez-Gomez G, Guerra J, et al. Oral montelukast, inhaled beclomethasone, and placebo for chronic asthma: a randomized, controlled trial. Montelukast/Beclomethasone Study Group. Ann Intern Med 1999; 130: 487–95

    PubMed  CAS  Google Scholar 

  23. Israel E, Chervinsky PS, Friedman B, et al. Effects of montelukast and beclomethasone on airway function and asthma control. J Allergy Clin Immunol 2002; 110:847–54

    Article  PubMed  CAS  Google Scholar 

  24. Szefler SJ, Phillips BR, Martinez FD, et al. Characterization of within-subject responses to fluticasone and montelukast in childhood asthma. J Allergy Clin Immunol 2005; 115: 233–42

    Article  PubMed  CAS  Google Scholar 

  25. Israel E, Fischer AR, Rosenberg MA, et al. The pivotal role of 5-lipoxygenase products in the reaction of aspirin-sensitive asthmatics to aspirin. Am Rev Respir Dis 1993; 148: 1447–51

    Article  PubMed  CAS  Google Scholar 

  26. Dahlen B, Nizankowska E, Szczeklik A, et al. Benefits from adding the 5-lipoxygenase inhibitor zileuton to conventional therapy in aspirin-intolerant asthmatics. Am J Respir Crit Care Med 1998; 157: 1187–94

    PubMed  CAS  Google Scholar 

  27. Christie PE, Smith CM, Lee TH. The potent and selective sulfidopeptide leukotriene antagonist, SK&F 104353, inhibits aspirin-induced asthma. Am Rev Respir Dis 1991; 144: 957–8

    Article  PubMed  CAS  Google Scholar 

  28. Ducharme FM. Anti-leukotrienes as add-on therapy to inhaled glucocorticoids in patients with asthma: systematic review of current evidence. BMJ 2002; 324: 1545–8

    Article  PubMed  CAS  Google Scholar 

  29. Ducharme FM, Lasserson TJ, Cates CJ. Long-acting beta2-agonists versus anti-leukotrienes as add-on therapy to inhaled corticosteroids for chronic asthma. Cochrane Database Syst Rev 2006; (4): CD003137

  30. American Lung Association Asthma Clinical Research Centers. Clinical trial of low-dose theophylline and montelukast in patients with poorly controlled asthma. Am J Respir Crit Care Med 2007; 175: 235–42

    Article  Google Scholar 

  31. Lima JJ, Zhang S, Grant A, et al. Influence of leukotriene pathway polymorphisms on response to montelukast in asthma. Am J Respir Crit Care Med 2006; 173: 379–85

    Article  PubMed  CAS  Google Scholar 

  32. Evans WE, McLeod HL. Pharmacogenomics: drug disposition, drug targets, and side effects. N Engl J Med 2003; 348: 538–49

    Article  PubMed  CAS  Google Scholar 

  33. In KH, Asano K, Beier D, et al. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription. J Clin Invest 1997; 99: 1130–7

    Article  PubMed  CAS  Google Scholar 

  34. Sampson AP, Siddiqui S, Buchanan D, et al. Variant LTC(4) synthase allele modifies cysteinyl leukotriene synthesis in eosinophils and predicts clinical response to zafirlukast. Thorax 2000; 55Suppl. 2: S28–31

    Article  PubMed  Google Scholar 

  35. Asano K, Shiomi T, Hasegawa N, et al. Leukotriene C4 synthase gene A(−444)C polymorphism and clinical response to a CYS-LT(1) antagonist, pranlukast, in Japanese patients with moderate asthma. Pharmacogenetics 2002; 12: 565–70

    Article  PubMed  CAS  Google Scholar 

  36. Whelan GJ, Blake K, Kissoon N, et al. Effect of montelukast on time-course of exhaled nitric oxide in asthma: influence of LTC4 synthase A(−444)C polymorphism. Pediatr Pulmonol 2003; 36: 413–20

    Article  PubMed  Google Scholar 

  37. Currie GP, Lima JJ, Sylvester JE, et al. Leukotriene C4 synthase polymorphisms and responsiveness to leukotriene antagonists in asthma. Br J Clin Pharmacol 2003; 56: 422–6

    Article  PubMed  CAS  Google Scholar 

  38. Currie GP, Lee DK. Uncertain biological relevance of polymorphisms of leukotriene C4 synthase in asthma [letter]. J Allergy Clin Immunol 2005; 115: 205

    Article  PubMed  Google Scholar 

  39. Helgadottir A, Manolescu A, Helgason A, et al. A variant of the gene encoding leukotriene A4 hydrolase confers ethnicity-specific risk of myocardial infarction. Nat Genet 2006; 38: 68–74

    Article  PubMed  CAS  Google Scholar 

  40. Wong SL, Awni WN, Cavanaugh JH, et al. The pharmacokinetics of single oral doses of zileuton 200 to 800mg, its enantiomers, and its metabolites, in normal healthy volunteers. Clin Pharmacokinet 1995; 29Suppl. 2: 9–21

    Article  PubMed  CAS  Google Scholar 

  41. Lu P, Schrag ML, Slaughter DE, et al. Mechanism-based inhibition of human liver microsomal cytochrome P450 1A2 by zileuton, a 5-lipoxygenase inhibitor. Drug Metab Dispos 2003; 31: 1352–60

    Article  PubMed  CAS  Google Scholar 

  42. Machinist JM, Kukulka MJ, Bopp BA. In vitro plasma protein binding of zileuton and its N-dehydroxylated metabolite. Clin Pharmacokinet 1995; 29Suppl. 2: 34–41

    Article  PubMed  CAS  Google Scholar 

  43. Awni WM, Wong S, Chu SY, et al. Pharmacokinetics of zileuton and its metabolites in patients with renal impairment. J Clin Pharmacol 1997; 37: 395–404

    PubMed  CAS  Google Scholar 

  44. Frye R. Pharmacogenetics of oxidative drug metabolism and its clinical applications. In: Thomas SJ, editor. Pharmacogenomics. Kansas City (MO): American College of Clinical Pharmacy, 2004: 273–307

    Google Scholar 

  45. Bernstein PR. Chemistry and structure: activity relationships of leukotriene receptor antagonists. Am J Respir Crit Care Med 1998; 157: S220–5

    CAS  Google Scholar 

  46. Jarvis B, Markham A. Montelukast: a review of its therapeutic potential in persistent asthma. Drugs 2000; 59: 891–928

    Article  PubMed  CAS  Google Scholar 

  47. Dunn CJ, Goa KL. Zafirlukast: an update of its pharmacology and therapeutic efficacy in asthma. Drugs 2001; 61: 285–315

    Article  PubMed  CAS  Google Scholar 

  48. Dekhuijzen PN, Koopmans PP. Pharmacokinetic profile of zafirlukast. Clin Pharmacokinet 2002; 41: 105–14

    Article  PubMed  Google Scholar 

  49. Keam SJ, Lyseng-Williamson KA, Goa KL. Pranlukast: a review of its use in the management of asthma. Drugs 2003; 63: 991–1019

    Article  PubMed  CAS  Google Scholar 

  50. Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2000; 46: 3–26

    Article  Google Scholar 

  51. Kim RB. Transporters and drug discovery: why, when, and how. Mol Pharm 2006; 3: 26–32

    Article  PubMed  CAS  Google Scholar 

  52. Sai Y. Biochemical and molecular pharmacological aspects of transporters as determinants of drug disposition. Drug Metab Pharmacokinet 2005; 20: 91–9

    Article  PubMed  CAS  Google Scholar 

  53. Kroetz D, Nyguyen T. Drug transporter pharmacogentics. In: Thomas J, editor. Pharmacogenomics. Kansas City (MO): American College of Clinical Pharmacy, 2004: 309–36

    Google Scholar 

  54. Zhang L, Brett CM, Giacomini KM. Role of organic cation transporters in drug absorption and elimination. Annu Rev Pharmacol Toxicol 1998; 38: 431–60

    Article  PubMed  CAS  Google Scholar 

  55. Choudhuri S, Klaassen CD. Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int J Toxicol 2006; 25: 231–59

    Article  PubMed  CAS  Google Scholar 

  56. Ayrton A, Morgan P. Role of transport proteins in drug absorption, distribution and excretion. Xenobiotica 2001; 31: 469–97

    Article  PubMed  CAS  Google Scholar 

  57. Marzolini C, Tirona RG, Kim RB. Pharmacogenomics of the OATP and OAT families. Pharmacogenomics 2004; 5: 273–82

    Article  PubMed  CAS  Google Scholar 

  58. Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP/ SLC21 family: phylogenetic classification as OATP/ SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch 2004; 447: 653–65

    Article  PubMed  CAS  Google Scholar 

  59. Kerb R. Implications of genetic polymorphisms in drug transporters for pharmacotherapy. Cancer Lett 2006; 234: 4–33

    Article  PubMed  CAS  Google Scholar 

  60. Chiba M, Xu X, Nishime JA, et al. Hepatic microsomal metabolism of montelukast, a potent leukotriene D4 receptor antagonist, in humans. Drug Metab Dispos 1997; 25: 1022–31

    PubMed  CAS  Google Scholar 

  61. Cheng H, Leff JA, Amin R, et al. Pharmacokinetics, bioavailability, and safety of montelukast sodium (MK-0476) in healthy males and females. Pharm Res 1996; 13: 445–8

    Article  PubMed  CAS  Google Scholar 

  62. Zhao JJ, Rogers JD, Holland SD, et al. Pharmacokinetics and bioavailability of montelukast sodium (MK-0476) in healthy young and elderly volunteers. Biopharm Drug Dispos 1997; 18: 769–77

    Article  PubMed  CAS  Google Scholar 

  63. Ramakrishnan R, Migoya E, Knorr B. A population pharmacokinetic model for montelukast disposition in adults and children. Pharm Res 2005; 22: 532–40

    Article  PubMed  CAS  Google Scholar 

  64. Balani SK, Xu X, Pratha V, et al. Metabolic profiles of montelukast sodium (Singulair), a potent cysteinyl leukotriene1 receptor antagonist, in human plasma and bile. Drug Metab Dispos 1997; 25: 1282–7

    PubMed  CAS  Google Scholar 

  65. Thibert R, Mach H, Clas SD, et al. Characterization of the self-association properties of leukotriene D4 receptor antagonist, MK-0476. Int J Pharm 1996; 14: 59–70

    Article  Google Scholar 

  66. Letschert K, Faulstich H, Keller D, et al. Molecular characterization and inhibition of amanitin uptake into human hepatocytes. Toxicol Sci 2006; 91: 140–9

    Article  PubMed  CAS  Google Scholar 

  67. Kobayashi D, Nozawa T, Imai K, et al. Involvement of human organic anion transporting polypeptide OATP-B (SLC21A9) in pH-dependent transport across intestinal apical membrane. J Pharmacol Exp Ther 2003; 306: 703–8

    Article  PubMed  CAS  Google Scholar 

  68. Leier I, Jedlitschky G, Buchholz U, et al. The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J Biol Chem 1994; 269: 27807–10

    PubMed  CAS  Google Scholar 

  69. Leier I, Jedlitschky G, Buchholz U, et al. Characterization of the ATP-dependent leukotriene C4 export carrier in mastocytoma cells. Eur J Biochem 1994; 220: 599–606

    Article  PubMed  CAS  Google Scholar 

  70. Funk CD. Leukotriene modifiers as potential therapeutics for cardiovascular disease. Nat Rev Drug Discov 2005; 4: 664–72

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the American Lung Association Asthma Clinical Research Centers, the Nemours Research Foundation, and the National Institutes of Health (grants R01 HL 071394 and R01 HL 074755). JJL does not have a financial relationship with a commercial entity that has an interest in the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Lima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, J.J. Treatment Heterogeneity in Asthma. Mol Diag Ther 11, 97–104 (2007). https://doi.org/10.1007/BF03256228

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256228

Keywords

Navigation