Skip to main content
Log in

Some factors underlying mathematical performance: The role of visuospatial working memory and non-verbal intelligence

  • Published:
European Journal of Psychology of Education Aims and scope Submit manuscript

Abstract

Passive and active visuospatial working memory (VSWM) were investigated in relation to maths performance. The mental rotation task was employed as a measure of active VSWM whereas passive VSWM was investigated using a modified Corsi Blocks task and a matrix pattern task. The Raven Progressive Matrices Test measured fluid intelligence. A total of 128 students, aged 15–16, served as participants. Fluid intelligence and passive VSWM accounted for variance in overall maths performance. Active VSWM exhibited significant correlations with maths measures, but in a series of regression analyses most of its effect was observed to be mediated by fluid intelligence. Different subscores of mathematical skills (geometry, word problems, and mental arithmetic) were accounted for by fluid intelligence and different measures of VSWM. The educational implications of the results are discussed.

Résumé

Les mémoires de travail visuo-spatiales passive et active (MTVS) ont été examinées en relation avec les performances en mathématiques. La tâche de rotation mentale a été examinée en utilisant un test “blocs de Corsi” modifié et un test de matrices. Le test des matrices progressives de Raven mesurait l’intelligence fluide. Un total de 128 élèves, âgés de 15 à 16 ans, ont participé. L’intelligence fluide et la MTVS passive étaient en cause pour les différences de performances en mathématiques de façon générale. La MTVS active a mis en avant des corrélations significatives avec les mesures de mathématiques, mais dans une série d’analyses de régression on a observé que la plupart de ses effets était transmis par l’intelligence fluide. Différents sous-résultats en capacités mathématiques (géométrie, problèmes de mots et arithmétique mentale) étaient expliqués par l’intelligence fluide et par différentes mesures de MTVS. Les implications éducationnelles sont discutées.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ashcraft, M.H. (1996). Cognitive psychology and simple arithmetic: A review and summary of new directions. In B. Butterworth (Ed.),Mathematical cognition 1 (pp. 3–34). Hove, UK: Psychology Press.

    Google Scholar 

  • Atkinson, R.C., & Shiffrin, R.M. (1968). Human memory: A proposed system and its control processes. In K.W. Spence & J.T. Spence (Eds.),The psychology of learning and motivation: advances in research and theory (vol. 2, pp. 92–122). New York: Academic Press.

    Google Scholar 

  • Bachot, J., Gevers, W., Fias, W., & Roeyers, H. (2005). Number sense in children with visuospatial disabilities: Orientation of the mental number line.Psychology Science, 47, 172–183.

    Google Scholar 

  • Baddeley, A.D. (1986).Working memory. Oxford: Oxford University Press.

    Google Scholar 

  • Baddeley, A.D. (1996). Exploring the central executive.Quarterly Journal of Experimental Psychology, 49, 5–28.

    Article  Google Scholar 

  • Baddeley, A.D. (1997).Human memory: Theory and practice (rev. ed.) Hove, UK: Psychology Press.

    Google Scholar 

  • Baddeley, A.D. (2000). The episodic buffer: A new component of working memory?Trends in Cognitive Sciences, 4, 417–423.

    Article  Google Scholar 

  • Baddeley, A.D., & Hitch, G.J. (1974). Working memory. In G. Bower (Ed.),The psychology of learning and motivation (vol. 8, pp. 47–90). New York: Academic Press.

    Google Scholar 

  • Baddeley, A.D., & Logie, R.H. (1999). Working memory: The multiple-component model. In A. Miyake & P. Shah (Eds.),Models of working memory (pp. 28–61).

  • Battista, M.T. (1990). Spatial visualization and gender differences in high school geometry.Journal for Research in Mathematics Education, 21, 47–60.

    Article  Google Scholar 

  • Bull, R., & Johnston, R.S. (1997). Children’s arithmetical difficulties: Contributions from processing speed, item identification, and short-term memory.Journal of Experimental Child Psychology, 65, 1–24.

    Article  Google Scholar 

  • Bull, R., Johnston, R.S., & Roy, J.A. (1999). Exploring the roles of the visuospatial sketch pad and central executive in children’s arithmetical skills: Views from cognition and developmental neuropsychology.Developmental Neuropsychology, 15, 421–442.

    Article  Google Scholar 

  • Butcher, H.J. (1968).Human Intelligence. Its Nature and Assessment. London: Methuen.

    Google Scholar 

  • Carpenter, P.A., Just, M.A., & Shell, P. (1990). What one intelligence test measures: A theoretical account of the processing in the Raven Progressive Matrices Test.Psychological Review, 97, 404–431.

    Article  Google Scholar 

  • Casey, M.B., Nuttall, R.L., & Pezaris, E. (1997). Mediators of gender differences in mathematics college entrance test scores: A comparison of spatial skills with internalized beliefs and anxieties.Developmental Psychology, 33, 669–680.

    Article  Google Scholar 

  • Cattell, R.B. (1971).Abilities: Their growth, structure, and action. Boston: Houghton Mifflin.

    Google Scholar 

  • Clements, D.H., & Battista, M.T. (1992). Geometry and spatial reasoning. In Douglas A. Grouws (Ed.),Handbook of Research on mathematics Teaching and Learning. New York: Macmillan Publishing Company.

    Google Scholar 

  • Colom, R., Flores-Mendoza, C., & Rebollo, I. (2003). Working memory and intelligence.Personality and Individual Differences, 34, 33–39.

    Article  Google Scholar 

  • Cornoldi, C., & Vecchi, T. (2003).Visuo-spatial Working Memory and Individual Differences. Essays in Cognitive Psychology. Hove: Psychology Press.

    Google Scholar 

  • Cornoldi, C., Rigoni, F., Tressoldi, P.E., & Vio, C. (1999). Imagery deficits in nonverbal learning disabilities.Journal of Learning Disabilities, 32, 48–63.

    Article  Google Scholar 

  • Daneman, M., & Carpenter, P.A. (1980). Individual differences in working memory and reading.Journal of Verbal Learning and Verbal Behavior, 19, 450–466.

    Article  Google Scholar 

  • Deary, I.J., Strand, S., Smith, P., & Fernandes, C. (2007). Intelligence and educational achievement.Intelligence, 35, 13–21.

    Article  Google Scholar 

  • DeShon, R.P., Chan, D., & Weissbein, D.A. (1995). Verbal overshadowing effects on Raven’s Advanced Progressive Matrices: Evidence for multidimensional performance determinants.Intelligence, 21, 135–155.

    Article  Google Scholar 

  • De Rammelaere, S., Stuyven, E., & Vandierendonck, A. (1999). The contribution of working memory resources in the verification of simple mental arithmetic sums.Psychological Research, 62, 72–77.

    Article  Google Scholar 

  • De Rammelaere, S., Stuyven, E., & Vandierendonck, A. (2001). Verifying simple arithmetic sums and products: Are the phonological loop and the central executive involved?Memory & Cognition, 29, 267–273.

    Google Scholar 

  • DeStefano, D., & LeFevre, J.-A. (2004). The role of working memory in mental arithmetic.European Journal of Cognitive Psychology, 16, 353–386.

    Article  Google Scholar 

  • Engle, R.W., Tuholski, S.W., Laughlin, J.E., & Conway, A.R.A. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach.Journal of Experimental Psychology, General, 128, 309–331.

    Article  Google Scholar 

  • Floyd, R.G., Evans, J.J., & McGrew, K.S. (2003). Relations between measures of Cattell-Horn-Carroll (CHC) cognitive, abilities and mathematics achievement across the school-age years.Psychology in the Schools, 40, 155–171.

    Article  Google Scholar 

  • Gathercole, S.E., Pickering, S.J., Ambridge, B., & Wearing, H. (2004). The structure of working memory from 4 to 15 years of age.Developmental Psychology, 40, 177–190.

    Article  Google Scholar 

  • Geary, D.C. (1994).Children’s mathematical development: Research and practical applications. Washington, DC: American Psychological Association.

    Book  Google Scholar 

  • Geary, D.C. (2004). Mathematics and learning disabilities.Journal of Learning Disabilities, 37, 4–15.

    Article  Google Scholar 

  • Haavisto, M.-L., & Lehto, J.E. (2004). Fluid spatial and crystallized intelligence in relation to domain-specific working memory: A latent-variable approach.Learning and Individual Differences 15, 1–21.

    Article  Google Scholar 

  • Healy, A. F. & Nairne, J. S. (1985). Short-term memory processes in counting.Cognitive Psychology, 17, 417–444.

    Article  Google Scholar 

  • Heathcote, D. (1994). The role of visuo-spatial working memory in mental addition of multi-digit addends.Current Psychology, 13, 207–245.

    Google Scholar 

  • Henry, L.A., & MacLean, M. (2003). Relationships between working memory, expressive vocabulary and arithmetical reasoning in children with and without intellectual disabilities.Educational and Child Psychology, 20, 51–64.

    Google Scholar 

  • Hitch, G.J. (1978). The role of short-term working memory in mental arithmetic.Cognitive Psychology, 10, 302–323.

    Article  Google Scholar 

  • Holmes, J., & Adams, J.W. (2006). Working memory and children’s mathematical skills: Implications for mathematical development and mathematics curricula.Educational Psychology, 26, 339–366.

    Article  Google Scholar 

  • Horn, J.L. (1968). Organization of abilities and the development of intelligence.Psychological Review, 75, 242–259.

    Article  Google Scholar 

  • Ikäheimo, H., Putkonen, H., & Voutilainen, E. (1988).Matematiikan keskeisen oppiaineksen kokeet luokille 1–9. Helsinki: Opperi. [in Finnish]

    Google Scholar 

  • Jarvis, H., & Gathercole, S. (2003). Verbal and non-verbal working memory and achievements on National Curriculum tests at 11 and 14 years of age.Educational and Child Psychology, 20, 123–140.

    Google Scholar 

  • Jensen, A.J. (1980).Bias in Mental Testing. London: Methuen.

    Google Scholar 

  • Johnson, W., & Bouchard Jr., T.J. (2005). The structure of human intelligence: It is verbal, perceptual, and image rotation (VPR), not fluid and crystallized.Intelligence, 33, 393–416.

    Article  Google Scholar 

  • Kosslyn, S.M., Margolis, J.A., Barrett, A.M., Goldknopf, E.J., & Daly, P.F. (1990). Age differences in imagery abilities.Child Development, 61, 995–1010.

    Article  Google Scholar 

  • Kuusinen, J., & Leskinen, E. (1986). Intelligence and school achievement,Psykologia, 21, 243–248. [in Finnish with English summary]

    Google Scholar 

  • Kyllonen, P.C., & Christal, R.E. (1990). Reasoning ability is (little more than) working-memory capacity?!Intelligence, 14, 389–433.

    Article  Google Scholar 

  • Kyttälä, M. (in press). Visuospatial working memory in adolescents with poor performance in mathematics: Variation depending on reading skills.Educational Psychology.

  • Kyttälä, M., Aunio, P., Lehto, J.E., Van Luit, J., & Hautamäki, J. (2003). Visuospatial working memory and early numeracy.Educational and Child Psychology, 20, 65–76.

    Google Scholar 

  • Lee, K., & Kang, S. (2002). Arithmetic operation and working memory: Differential suppression in dual tasks.Cognition, 83, B63-B68.

    Article  Google Scholar 

  • Lee, K., Ng, S.-F., Ng, E.-L., & Lim, Z.-Y. (2004). Working memory and literacy as predictors of performance on algebraic word problems.Journal of Experimental Child Psychology, 89, 140–158.

    Article  Google Scholar 

  • Lemaire, P., Abdi, H., & Fayol, M. (1996). The role of working memory resources in simple cognitive arithmetic.European Journal of Cognitive Psychology, 8, 73–103.

    Article  Google Scholar 

  • Logie, R.H. (1993). Working memory in everyday cognition. In G.M. Davies & R.H. Logie (Eds.),Memory in everyday life (pp. 173–218). Amsterdam: North-Holland.

    Chapter  Google Scholar 

  • Logie, R.H., & Baddeley, A.D. (1987). Cognitive processes in counting.Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 310–326.

    Article  Google Scholar 

  • Logie, R.H., & Marchetti, C. (1991). Visuo-spatial working memory: Visual, spatial or central executive? In R.H. Logie & M. Denis (Eds.),Mental images in human cognition (pp. 105–115). Amsterdam: North-Holland.

    Chapter  Google Scholar 

  • Logie, R.H., & Pearson, D.G. (1997). The inner eye and the inner scribe of visuo-spatial working memory: Evidence from developmental fractionation.European Journal of Cognitive Psychology, 9, 241–257.

    Article  Google Scholar 

  • Logie, R.H., Gilhooly, K.J., & Wynn, V. (1994). Counting on working memory in arithmetic problem solving.Memory and Cognition, 22, 395–410.

    Google Scholar 

  • Loring-Meier, S., & Halpern, D.F. (1999). Sex differences in visuospatial working memory: Components of cognitive processing.Psychonomic Bulletin & Review, 6, 464–471.

    Google Scholar 

  • Maybery, M.T., & Do, N. (2003). Relationships between facets of working memory and performance on a curriculumbased mathematics test in children.Educational and Child Psychology, 20, 77–92.

    Google Scholar 

  • McKenzie, B., Bull, R., & Gray, C. (2003). The effects of phonological and visuospatial interference on children’s arithmeti cal performance.Educational and Child Psychology, 20, 93–108.

    Google Scholar 

  • McLean, J.F., & Hitch, G.J. (1999). Working memory impairments in children with specific arithmetic learning difficulties.Journal of Experimental Child psychology, 74, 240–260.

    Article  Google Scholar 

  • Milner, B. (1971). Interhemispheric differences in the localization of psychological processes in man.British Medical Bulletin: Cognitive Psychology, 27, 272–277.

    Google Scholar 

  • Miyake, A., & Shah, P. (Eds.). (1999).Models of working memory: Mechanisms of active maintenance and executive control. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Miyake, A., Friedman, N.P., Rettinger, D.A., Shah, P., & Hegarty, M. (2001). How are visuospatial working memory, executive functioning, and spatial abilities related? A latent variable analysis.Journal of Experimental Psychology: General, 130, 621–640.

    Article  Google Scholar 

  • Neçka, E. (1992). Cognitive analysis of intelligence: The significance of working memory processes.Personality and Individual Differences, 9, 1031–1046.

    Article  Google Scholar 

  • Ozer, D.J. (1987). Personality, intelligence, and spatial visualization: Correlates of mental rotations test performance.Journal of Personality and Social Psychology, 53, 129–134.

    Article  Google Scholar 

  • Passolunghi, M.C., & Siegel, L.S. (2004). Working memory and access to numerical information in children with disability in mathematics.Journal of Experimental Child Psychology, 88, 348–367.

    Article  Google Scholar 

  • Pazzaglia, F., & Cornoldi, C. (1999). The role of distinct components of visuo-spatial working memory in the processing of texts.Memory, 7, 19–41.

    Article  Google Scholar 

  • Pickering, S.J., Gathercole, S.E., Hall, M., & Lloyd, S.A. (2001). Development of memory for pattern and path: Further evidence for the fractionation of visuo-spatial memory.Quarterly Journal of Experimental Psychology, 54, 397–420.

    Article  Google Scholar 

  • Quaiser-Pohl, C., & Lehmann, W. (2002). Girls’ spatial abilities: Charting the contributions of experiences and attitudes in different academic groups.British Journal of Educational Psychology, 72, 245–260.

    Article  Google Scholar 

  • Raven, J. (2000). The Raven’s Progressive Matrices: Change and stability over culture and time.Cognitive Psychology, 41, 1–48.

    Article  Google Scholar 

  • Raven, J.C., Court, J.H., & Raven, J. (1992).Standard Progressive Matrices. Oxford: Oxford Psychologists Press.

    Google Scholar 

  • Reuhkala, M. (2001). Mathematical skills in ninth-graders: Relationship with visuo-spatial abilities and working memory.Educational Psychology, 21, 387–399.

    Article  Google Scholar 

  • Schweizer, K., & Moosbrugger, H. (2004). Attention and working memory as predictors of intelligence.Intelligence, 32, 329–347.

    Article  Google Scholar 

  • Shah, P., & Miyake, A. (1996). The separability of working memory resources for spatial thinking and language processing: An individual differences approach.Journal of Experimental Psychology: General, 125, 4–27.

    Article  Google Scholar 

  • Shepard, R.N., & Metzler, J. (1971). Mental rotation of three-dimensional objects.Science, 171, 701–703.

    Article  Google Scholar 

  • Siegel, L.S. (1994). Working memory and reading: A life-span perspective.International Journal of Behavioral Development, 17, 109–124.

    Google Scholar 

  • Siegel, L.S., & Ryan, E.B. (1989). The development of working memory in normally achieving and subtypes of learning disabled children.Child development, 60, 973–980.

    Article  Google Scholar 

  • Skemp, R.R. (1986).The psychology of learning mathematics, London: Penguin Books.

    Google Scholar 

  • Snow, R.E., & Yalow, E. (1982) Education and intelligence. In R.J. Sternberg (Ed.),Handbook of Human Intelligence (pp. 493–585). Cambridge: Cambridge University Press.

    Google Scholar 

  • Spearman, C. (1927).The abilities of man: Their nature and measurement. London: Macmillan.

    Google Scholar 

  • Spinath, B., Spinath, F.M., Harlaar, N., & Plomin, R. (2006). Predicting school achievement from general cognitive ability, self-perceived ability, and intrinsic value.Intelligence, 34, 363–374.

    Article  Google Scholar 

  • Swanson, H.L. (1993). Working memory in learning disability subgroups.Journal of Experimental Child Psychology, 56, 87–114.

    Article  Google Scholar 

  • Swanson, H.L. (1999). What develops in working memory? A life span perspective.Developmental Psychology, 35, 986–1000.

    Article  Google Scholar 

  • Süß, H.-M., Oberauer, K., Wittman, W.W., Wilhelm, O., & Schulze, R. (2002). Working-memory capacity explains reasoning ability — and a little bit more.Intelligence, 30, 261–288.

    Article  Google Scholar 

  • Tabachnick, B.G., & Fidell, L.S. (2001).Using Multivariate Statistics (4th ed.). Boston: Allyn and Bacon.

    Google Scholar 

  • Trbovich, P.L., & LeFevre, J.-A. (2003). Phonological and visual working memory in mental addition.Memory & Cognition, 31, 738–745.

    Google Scholar 

  • Undheim, J.O., & Gustafsson, J.-E. (1987). The hierarchical organization of cognitive abilities: Restoring general intelligence through the use of linear structural relations (LISREL).Multivariate Behavioral Research, 22, 149–171.

    Article  Google Scholar 

  • Vandenberg, S.G., & Kuse, A.R. (1978). Mental rotations, a group test of three-dimensional spatial visualization.Perceptual and Motor Skills, 47, 599–604.

    Google Scholar 

  • Wilson, K.M., & Swanson, L. (2001). Are mathematics disabilities due to a fdomain-general or a domain-specific working memory deficit?Journal of Learning Disabilities, 34, 237–248.

    Article  Google Scholar 

  • Wilson, J.T.L., Scott, J.H., & Power, G. (1987). Developmental differences in the span of visual memory for pattern.British Journal of Developmental Psychology 5, 249–255.

    Google Scholar 

  • Zorzi, M., Priftis, K., & Umiltà. (2002). Neglect disrupts the mental number line.Nature, 417, 138.

    Article  Google Scholar 

  • Zorzi, M., Priftis, K., Meneghello, F., Marenzi, R., & Umiltà. (2006). The spatial representation of numerical and nonnumerical sequences: Evidence from neglect.Neuropsychologia, 44, 1061–1067.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kyttälä, M., Lehto, J.E. Some factors underlying mathematical performance: The role of visuospatial working memory and non-verbal intelligence. Eur J Psychol Educ 23, 77–94 (2008). https://doi.org/10.1007/BF03173141

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03173141

Key words

Navigation