Skip to main content
Log in

Binding of [3H]serotonin to lymphocytes in patients with neuropsychiatric disorders

  • Published:
Molecular and Chemical Neuropathology

Abstract

Based on recent studies of neuroimmune networks, the lymphocyte binding of serotonin neurotransmitter was studied in patients with Alzheimer’s disease, idiopathic mental retardation, and autism. The specific binding to lymphocytes of [3H]serotonin, at a single concentration of 100 nM, was significantly reduced in Alzheimer’s disease patients as compared to aged controls (group mean of 3.667 ± 2.301 v 7.506 ± 1.717 picomoles;p=0.001), and in children with idiopathic mental retardation as compared to healthy children (group mean of 3.694±1.627 v 5.792±1.902 picomoles;p=0.003).

However, autistic children did not differ significantly from the healthy children (group mean of 5.287±1.987 v 5.792±1.902 picomoles;p=0.475). Reduced lymphocyte binding of serotonin may be an indication of breakdown of an unknown neuroimmune pathway relevant to the pathophysiology of Alzheimer’s disease and idiopathic mental retardation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartha E., Szelenji K., Szilagji K., Venter V., Thu Ha N. T., Paldi-Harris P., and Hollan S. (1987) Altered lymphocyte acetylcholinesterase in patients with senile dementia.Neurosci. Lett. 79, 190–194.

    Article  PubMed  CAS  Google Scholar 

  • Bonnet M., Lespinats G., and Burtin C. (1984) Histamine and serotonin suppression of lymphocyte response to phytohemagglutinin and allogeneic cells.Cell. Immunol. 83, 280–291.

    Article  PubMed  CAS  Google Scholar 

  • Bonnet M., Lespinats G., and Burtin C. (1988) Evidence for serotonin (5-HT) binding sites on murine lymphocytes.Int. J. Pharmacol. 9, 551–558.

    Google Scholar 

  • Bowen D. M. and Davison A. N. (1986) Biochemical studies of nerve cells and energy metabolism in Alzheimer’s disease.Br. Med. Bull. 42, 75–80.

    PubMed  CAS  Google Scholar 

  • Gibson G. E., Nielson P., Sherman K. A., and Blass J. P. (1987) Diminished mitogen-induced calcium uptake by lymphocytes from Alzheimer’s patients.Biol. Psychiatr 22, 1079–1086.

    Article  CAS  Google Scholar 

  • Grossman H. J. (1983)Classification in Mental Retardation, Chap. 5, pp. 59–77, American Association on Mental Deficiency Publ., Washington, D. C.

    Google Scholar 

  • Heston L. L. and White J. A. (1983)Dementia: A Practical Guide to Alzheimer’s Disease and Related Illnesses, Chap. 2, pp. 11–23, W. H. Freeman and Co., New York, N.Y.

    Google Scholar 

  • Jackson J. C., Cross R. J., Walker R. F., Markesbery W. R., Brooks W. H., and Roszman, T. L. (1985) Influence of serotonin on the immune response.Immunology 54, 505–512.

    PubMed  CAS  Google Scholar 

  • Martelleti P., Alteri E., Pesce A., Rinaldi-Garaci C., and Giacovazzo M. (1988) In vitro interactions of serotonin (5-HT) with mononuclear cells from migraine patients: Alterations related to the phase of the attack.J. Neuroimmunol. 18, 17–24.

    Article  Google Scholar 

  • Rossor M. and Iversen L. L. (1986) Noncholinergic neurotransmitter abnormalities in Alzheimer’s disease.Br. Med. Bull. 42, 70–74.

    PubMed  CAS  Google Scholar 

  • Schmidt A. W. and Peroutka S. J. (1989) 5-Hydroxytryptamine receptor “families”.FASEB J. 3, 2242–2249.

    PubMed  CAS  Google Scholar 

  • Singh V. K. (1990) Neuroimmune axis as a basis of therapy in Alzheimer’s disease.Prog. Drug Res. 34, 383–393.

    PubMed  CAS  Google Scholar 

  • Singh V. K. and Fudenberg H. H. (1988) Binding of [125I] corticotropin releasing factor to blood immunocytes and its reduction in Alzheimer’s disease.Immunol. Lett. 18, 5–8.

    Article  PubMed  CAS  Google Scholar 

  • Singh V. K., Fudenberg H. H., and Brown F. R. (III) (1987) Immunologic dysfunction: Simultaneous study of Alzheimer’s and Down’s patients.Mech. Ageing Develop. 37, 257–264.

    Article  CAS  Google Scholar 

  • Singh V. K. and Warren R. P. (1989) Immunologic approach to therapy in Alzheimer’s disease, inNovel Approaches to the Treatment of Alzheimer’s Disease (Meyer E. M., Simpkins J. W., and Yamamoto J., eds.), pp. 213–220, Plenum, New York, N.Y.

    Google Scholar 

  • Slauson D. O., Walker C., Kristensen F., Wang Y., and De Weck, A. L. (1984) Mechanism of serotonin-induced lymphocyte proliferation inhibition.Cell. Immunol. 84, 240–252.

    Article  PubMed  CAS  Google Scholar 

  • Solomon G. F. (1987) Psychoneuroimmunology: interactions between central nervous system and immune system.J. Neurosci. Res. 18, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Warren R. P., Kane K. K., Burger R. A., and Singh V. K. (1990) Serotonin-induced suppression of lymphocyte DNA synthesis and NK cell activity.Ann. N.Y. Acad. Sci. 594, 429–431.

    Article  Google Scholar 

  • Wisniewski K. E., Wisniewski H. M., and Wen G. Y. (1985) Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome.Ann. Neurol. 17, 278–282.

    Article  PubMed  CAS  Google Scholar 

  • Zubenko G. S., Wusylko M., Cohen B. M., Boller F., and Teply I. (1987) Family study of platelet membrane fluidity in Alzheimer’s disease.Science 238, 539–542.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, V.K., Warren, R.P. & Singh, E.A. Binding of [3H]serotonin to lymphocytes in patients with neuropsychiatric disorders. Molecular and Chemical Neuropathology 13, 167–173 (1990). https://doi.org/10.1007/BF03159919

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03159919

Keywords

Navigation