Skip to main content
Log in

Optimized acquisition and processing protocols for I-123 cardiac SPECT imaging

  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Deconvolution of septal penetration (DSP) has been developed to improve quantification so as to allow the use of low-energy high-resolution collimators for iodine 123 cardiac single photon emission computed tomography (SPECT) imaging. The purpose of this study is to optimize its acquisition and processing protocols.

Methods and Results

Planar images of a 9-compartment phantom loaded with variable radioactive concentrations were acquired to derive optimal scatter compensation scaling factors for 20% and 15% photopeak energy window configurations, respectively. A cardiac phantom, loaded with high and low heart-to-calibration ratios (HCRs), respectively, was imaged with both configurations. Repeated acquisitions were done for medium-energy all-purpose collimators for comparison. Critical frequencies for Butterworth filtering were optimized by use of defect contrast and normal short-axis uniformity as selection indices. HCRs were calculated with planar projection and different reconstruction methods, respectively, and then compared with the true HCRs. SPECT produced more accurate HCRs than planar imaging. With the optimized parameters for scatter compensation and filtering, the 2 energy window configurations yielded similar results. Iterative reconstructions with DSP yielded more accurate HCRs than other reconstructions without DSP.

Conclusion

The optimized protocols based on DSP show promise that quantification of I-123 cardiac SPECT imaging can be achieved with the widely available low-energy high-resolution collimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Patel AD, Iskandrian AE. MIBG imaging. J Nucl Cardiol 2002;9:75–944.

    Article  PubMed  Google Scholar 

  2. Hattori N, Schwaiger M. Metaiodobenzylguanidine scintigraphy of the heart: what have we leamt clinically? Eur J Nucl Med 2000;27:1–6.

    Article  PubMed  CAS  Google Scholar 

  3. Merlet P, Valette H, Dubois-Rande JL, Moyse D, Duboc D, Dove P, et al. Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure. J Nucl Med 1992;33:471–7.

    PubMed  CAS  Google Scholar 

  4. Merlet P, Benvenuti C, Moyse D, Pouillart F, Dubois-Rande JL, Duval AM, et al. Prognostic value of MIBG imaging in idiopathic dilated cardiomyopathy. J Nucl Med 1999;40:917–23.

    PubMed  CAS  Google Scholar 

  5. Suwa M, Otake Y, Moriguchi A, Ito T, Hirota Y, Kawamura K, et al. Iodine-123 metaiodobenzylguanidine myocardial scintigraphy for prediction of response to beta-blocker therapy in patients with dilated cardiomyopathy. Am Heart J 1997;133:353–8.

    Article  PubMed  CAS  Google Scholar 

  6. Fukuoka S, Hayashida K, Hirose Y, Shimotsu Y, Ishida Y, Kakuchi H, et al. Use of iodine-123 metaiodobenzylguanidine myocardial imaging to predict the effectiveness of beta-blocker therapy in patients with dilated cardiomyopathy. Eur J Nucl Med 1997;24:523–9.

    PubMed  CAS  Google Scholar 

  7. Kakuchi H, Sasaki T, Ishida Y, Komamura K, Miyatake K. Clinical usefulness of123I metaiodobenzylguanidine imaging in predicting the effectiveness of beta-blocker for patients with idiopathic dilated cardiomyopathy before and soon after treatment. Heart 1999;81:148–52.

    PubMed  CAS  Google Scholar 

  8. Merlet P, Pouillart F, Dubois-Rande JL, Delahaye N, Fumey R, Castaigne A, et al. Sympathetic nerve alterations assessed with123I-MIBG in the failing human heart. J Nucl Med 1999;40:224–31.

    PubMed  CAS  Google Scholar 

  9. Toyama T, Aihara Y, Iwasaki T, Hasegawa A, Suzuki T, Nagai R, et al. Cardiac sympathetic activity estimated by123I-MIBG myocardial imaging in patients with dilated cardiomyopathy after beta-blocker or angiotensin-converting enzyme inhibitor therapy. J Nucl Med 1999;40:217–23.

    PubMed  CAS  Google Scholar 

  10. Agostini D, Belin A, Amar MH, Dallas Y, Hamon M, Grollier G, et al. Improvement of cardiac neuronal function after carvedilol treatment in dilated cardiomyopathy: a123I-MIBG scintigraphic study. J Nucl Med 2000;41:845–51.

    PubMed  CAS  Google Scholar 

  11. Choi JY, Lee KH, Hong KP, Kim BT, Seo JD, Lee WR, et al. Iodine-123 MIBG imaging before treatment of heart failure with carvedilol to predict improvement of left ventricular function and exercise capacity. J Nucl Cardiol 2001;8:4–9.

    Article  PubMed  CAS  Google Scholar 

  12. Nishimura T, Sago M, Kihara K, Oka H, Shimonagata T, Katabu-chi T, et al. Fatty acid myocardial imaging using123I-β-methyl-iodophenyl pentadecanoic acid (BMIPP): comparison of myocardial perfusion and fatty acid utilization in canine myocardial infarction (occlusion and reperfusion model). Eur J Nucl Med 1989;15:341–5.

    Article  PubMed  CAS  Google Scholar 

  13. Knapp FF Jr, Franken P, Kropp J. Cardiac SPECT with iodine-123-labeled fatty acids: evaluation of myocardial viability with BMIPP. J Nucl Med 1995;36:1022–30.

    PubMed  CAS  Google Scholar 

  14. Tamaki N, Kawamoto M, Yonekura Y, Fujibayashi Y, Takahashi N, Konishi J, et al. Regional metabolic abnormality in relation to perfusion and wall motion in patients with myocardial infarction: assessment with emission tomography using iodinated branched fatty acid analog. J Nucl Med 1992;33:659–67.

    PubMed  CAS  Google Scholar 

  15. Franken PR, De Geeter F, Dendale P, Demoor D, Block P, Bossuyt A. Abnormal free fatty acid uptake in subacute myocardial infarction after coronary thrombolysis: correlation with wall motion and inotropic reserve. J Nucl Med 1994;35:1758–65.

    PubMed  CAS  Google Scholar 

  16. Tateno M, Tamaki N, Yukihiro M, Kudoh T, Hattori N, Tadamura E, et al. Assessment of fatty acid uptake in ischemic heart disease without myocardial infarction. J Nucl Med 1996;37:1981–5.

    PubMed  CAS  Google Scholar 

  17. Tamaki N, Morita K, Kuge Y, Tsukamoto E. The role of fatty acids in cardiac imaging. J Nucl Med 2000;41:1525–34.

    PubMed  CAS  Google Scholar 

  18. Bolmsjo MS, Persson BR, Strand SE. Imaging123I with a scintil- lation camera. A study of detection performance and quality factor concepts. Phys Med Biol 1977;22:266–77.

    Article  PubMed  CAS  Google Scholar 

  19. Fleming JS, Alaamer AS. Influence of collimator characteristics on quantification in SPECT. J Nucl Med 1996;37:1832–6.

    PubMed  CAS  Google Scholar 

  20. Dobbeleir AA, Hambye ASE, Franken PR. Influence of methodology on the presence and extent of mismatching between99mTc-MIBI and123I-BMIPP in myocardial viability studies. J Nucl Med 1999;40:707–14.

    PubMed  CAS  Google Scholar 

  21. Macey DJ, DeNardo GL, DeNardo SJ, Hines HH. Comparison of low- and medium-energy collimators for SPECT imaging with iodine-123-labeled antibodies. J Nucl Med 1986;27:1467–74.

    PubMed  CAS  Google Scholar 

  22. De Geeter FD, Franken PR, Defrise M, Andries H, Saelens E, Bossuyt A. Optimal collimator choice for sequential iodine-123 and technetium-99m imaging. Eur J Nucl Med 1996;23:768–744.

    Article  PubMed  CAS  Google Scholar 

  23. Dobbeleir AA, Hambye AS, Franken PR. Influence of high-energy photons on the spectrum of iodine-123 with low- and medium-energy collimators: consequence for imaging with123I-labelled compounds in clinical practice. Eur J Nucl Med 1999;26:655–8.

    Article  PubMed  CAS  Google Scholar 

  24. Inoue Y, Suzuki A, Shirouzu I, Machida T, Yoshizawa Y, Akita F, et al. Effect of collimator choice on quantitative assessment of cardiac iodine 123 MIBG uptake. J Nucl Cardiol 2003;10:623–322.

    Article  PubMed  Google Scholar 

  25. Inoue Y, Shirouzu I, Machida T, Yoshizawa Y, Akita F, Minami M, et al. Collimator choice in cardiac SPECT with I-123-labeled tracers. J Nucl Cardiol 2004;11:433–9.

    Article  PubMed  Google Scholar 

  26. Jaszczak RJ, Greer KL, Floyd CE Jr, Harris CC, Coleman RE. Improved SPECT quantitation using compensation for scattered photons. J Nucl Med 1984;25:893–9.

    PubMed  CAS  Google Scholar 

  27. Ogawa K, Ichihara T, Kubo A. Accurate scatter correction in single photon emission CT. Ann Nucl Med Sci 1994;7:145–50.

    Google Scholar 

  28. Koral KF, Wang XQ, Rogers WL, Clinthome NH, Wang X. SPECT Compton-scattering correction by analysis of energy spectra. J Nucl Med 1988;29:195–202.

    PubMed  CAS  Google Scholar 

  29. Gagnon D, Todd-Pokropek A, Arsenault A, Dapras G. Introduction to holospectral imaging in nuclear medicine for scatter subtraction. IEEE Trans Med Imaging 1989;8:245–50.

    Article  PubMed  CAS  Google Scholar 

  30. Haynor DR, Kaplan MS, Miyaoka RS, Lewellen TK. Multiwindow scatter correction techniques in single-photon imaging. Med Phys 1995;22:2015–24.

    Article  PubMed  CAS  Google Scholar 

  31. Koral KF, Swailem FM, Buchbinder S, Clinthome NH, Rogers WL, Tsui BMW. SPECT dual-energy-window Compton correction: scatter multiplier required for quantification. J Nucl Med 1990;29:195–202.

    Google Scholar 

  32. Garcia EV, Cooke CD, Van Train KF, Folks R, Peifer J, DePuey EG, et al. Technical aspects of myocardial SPECT imaging with technetium-99m sestamibi. Am J Cardiol 1990;66:23E-31E.

    Article  PubMed  CAS  Google Scholar 

  33. Gifford HC, King MA, Wells RG, Hawkins WG, Narayanan MV, Pretorius PH. LROC analysis of detector-response compensation in SPECT. IEEE Trans Med Imaging 2000;19:463–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Chen.

Additional information

This work was supported in part by a grant from GE Healthcare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Garcia, E.V., Galt, J.R. et al. Optimized acquisition and processing protocols for I-123 cardiac SPECT imaging. J Nucl Cardiol 13, 251–260 (2006). https://doi.org/10.1007/BF02971250

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02971250

Key Words

Navigation