Skip to main content
Log in

Membrane transport of ions in hypertension

  • Hypertension
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

A variety of disturbances in transmembrane monovalent and divalent cation fluxes has been described in blood cells from hypertensive patients. Other membrane properties, such as fluidity and calcium binding, are also altered. It is now abundantly clear that some of the inconsistencies in this field are due to poor matching of patients and controls. However, even when careful matching is carried out, differences in membrane functions are still seen. It is suggested that these are due to a disturbance in the physicochemical properties of the cell membrane, related to changes in cell membrane phospholipid fluidity. This change could maintain peripheral resistance either by directly or indirectly increasing tone or by predisposing to resistance vessel hypertrophy. Recent evidence emphasizes the role of the latter rather than the former in experimental hypertension. It is postulated that overactivity of the phosphoinositide second messenger system as a result of alteration in all membrane properties predisposes genetically susceptible individuals to resistance-vessel hypertrophy and hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tobian L, Janecek A, Tomboulian A, Ferreira D. Sodium and potassium in the walls of the arterioles in experimental renal hypertension.J Clin Invest 1961;40:1922–1925.

    Article  PubMed  CAS  Google Scholar 

  2. Blaustein MP. Sodium ions, calcium ions, blood pressure regulation, and hypertension: A reassessment and a hypothesis.Am J Physiol 1977;232:C165-C173.

    PubMed  CAS  Google Scholar 

  3. Van Breemen C, Aaronson P, Loutzenhiser R. Sodium-calcium interactions in mammalian smooth muscle.Pharm Rev 1979;3:167–208.

    Google Scholar 

  4. Brading AF, Lategan TW. Na−Ca exchange in vascular smooth muscle.J Hypertens 1985;3:109–116.

    Article  PubMed  CAS  Google Scholar 

  5. Mulvany MJ. Changes in sodium pump activity and vascular contraction.J Hypertens 1985;3:429–436.

    Article  PubMed  CAS  Google Scholar 

  6. Harder DR, Hermsmeyer K. Membrane mechanisms in arterial hypertension.Hypertension 1983;5:404–408.

    PubMed  CAS  Google Scholar 

  7. Aalkjaer C, Heagerty AM, Parvin SD, Bell PRF, Bing RF, Swales JD. Cell membrane sodium transport: A correlation between human resistance vessels and leucocytes.Lancet 1986;1:649–651.

    Article  PubMed  CAS  Google Scholar 

  8. Aalkjaer C, Heagerty AM, Bailey I, Mulvany MJ, Swales JD. Studies of isolated resistance vessels from offspring of essential hypertensive patients.Hypertension 1987;9(Suppl III):III155–158.

    PubMed  CAS  Google Scholar 

  9. Aalkjaer C, Heagerty AM, Peterson KK, Swales JD, Mulvany MJ. Evidence for increased media thickness and increased neuronal amine uptake, but depressed excitation-contraction coupling in isolated resistance vessels from essential hypertensives.Circ Res 1987;61:181–186.

    PubMed  CAS  Google Scholar 

  10. Losse H, Wehmeyer H, Wessels F. Wasser-und elektrolytgehalt von erythrozyten bei arterieller hypertonie.Klin Wochenschrift 1960;38:393–395.

    Article  CAS  Google Scholar 

  11. Garay RP, Meyer P. A new test showing abnormal net Na+ and K+ fluxes in erythrocytes of essential hypertensive patients.Lancet 1979;1:349–353.

    Article  PubMed  CAS  Google Scholar 

  12. Canessa M, Adragna N, Solomon HS, Connolly TM, Tosteson DC. Increased sodium-lithium countertransport in red cells of patients with essential hypertension.N Engl J Med 1980;302:772–776.

    Article  PubMed  CAS  Google Scholar 

  13. Parker JC, Berkowitz LR. Physiologically instructive genetic variants involving the human red cell membrane.Phys Rev 1983;63:261–313.

    CAS  Google Scholar 

  14. Davidson JS, Opie LH, Keding B. Sodium-potassium co-transport activity as a genetic marker in essential hypertension.Br Med J 1982;284:539–541.

    Article  CAS  Google Scholar 

  15. Cooper R, Trevisan M, Ostrow D, Sempos C, Stamler J. Blood pressure and sodium-lithium counter-transport: Findings in population-based surveys.J Hypertens 1984;2:467–471.

    Article  PubMed  CAS  Google Scholar 

  16. Swales JD. Abnormal ion transport by cell membranes in hypertension. In: Robertson JIS, ed.Handbook of hypertension, Vol 1 Amsterdam: Elsevier Press, 1983:239–266.

    Google Scholar 

  17. Swales JD. Interpreting ion transport studies in hypertension: Methods, myths and hypotheses.J Hypertens 1983;1(Suppl 2):391–394.

    Google Scholar 

  18. Bramley PM, Paulin JM, Millar JA. Intracellular cations and transmembrane cation transport in essential hypertension. The importance of controlled clinical observations.J Hypertens 1986;4:589–596.

    Article  PubMed  CAS  Google Scholar 

  19. Hunt SC, Williams RR, Smith JB, Ash KO. Associations of three erythrocyte cation transport systems with plasma lipids in Utah subjects.Hypertension 1986;8:30–36.

    PubMed  CAS  Google Scholar 

  20. McDonald AM, Dyer AR, Liu K, Stamler, R, Gosch FC, Grimm R, Berman R, Stamler J. Sodium-lithium counter-transport and blood pressure control by nutritional intervention in mild hypertension.J Hypertens 1988;6:283–292.

    Article  PubMed  CAS  Google Scholar 

  21. Adregna NC, Chang JL, Morey MC, Williams RS. Effect of exercise on cation transport in human red cells.Hypertension 1985;7:132–139.

    Google Scholar 

  22. Hespel P, Lijnen P, Fagard R, M'Buyamba-Kabangu JR, Van Hoof R, Lissens W, Rosseneu M, Amery A. Changes in erythrocyte sodium and plasma lipids associated with physical training.J Hypertens 1988;6:159–166.

    PubMed  CAS  Google Scholar 

  23. Heagerty AM, Riozzi A, Brand SC, Bing RF, Thurston H, Swales JD. Membrane transport of ions in hypertension: A review.Scand J Clin Lab Invest 1986;46(Suppl 180):54–64.

    CAS  Google Scholar 

  24. Postnov YV, Orlov SN, Pokudin NI. Decrease of calcium binding by the red blood cell membrane in spontaneously hypertensive rats and in essential hypertension.Pflügers Arch 1979;379:191–195.

    Article  PubMed  CAS  Google Scholar 

  25. Devynck MA, Pernollet MG, Nunez AM, Meyer P. Analysis of calcium handling in erythrocyte membranes of genetically hypertensive rats.Hypertension 1981;3:397–403.

    PubMed  CAS  Google Scholar 

  26. Bing RF, Booth GC, Heagerty AM, Swales JD. Erythrocyte membrane calcium binding in normotensive and hypertensive subjects.J Hypertens 1986;4(Suppl 6):S299-S302.

    CAS  Google Scholar 

  27. Vincenzi FF, Morris CD, Kinsel LB, Kenny M, McCarron DA. Decreased calcium pump adenosine triphosphatase in red blood cells of hypertensive subjects.Hypertension 1986;8:1058–1066.

    PubMed  CAS  Google Scholar 

  28. Postnov YV, Orlov SN, Reznikova MB, Rjazhsky GG, Pokudin NI. Calmodulin distribution and Ca2+ transport in the erythrocytes of patients with essential hypertension.Clin Sci 1984;66:459–463.

    PubMed  CAS  Google Scholar 

  29. Erne P, Bolli P, Burgisser E, Buhler F. Correlation of platelet calcium with blood pressure: Effect of antihypertensive therapy.N Engl J Med 1984;310:1084–1088.

    Article  PubMed  CAS  Google Scholar 

  30. Bruschi G, Bruschi ME, Carpoppo M, Orlandini G, Spaggiari M, Cavatorta A. Cytoplasmic free [Ca+] is increased in the platelets of spontaneously hypertensive rats and essential hypertensive patients.Clin Sci 1985;68:179–184.

    PubMed  CAS  Google Scholar 

  31. Bing RF, Heagerty AM, Jackson JA, Thurston H, Swales JD. Leukocyte ionized calcium and sodium content and blood pressure in humans.Hypertension 1986;8:483–488.

    PubMed  CAS  Google Scholar 

  32. Shore AC, Beynon GW, Jones JC, Markandu ND, Sagnella GA, MacGregor GA. Mononuclear leucocyte intracellular free calcium: Does it correlate with blood pressure?J. Hypertens 1985;3:183–188.

    Article  PubMed  CAS  Google Scholar 

  33. Orlov SN, Postnov YV. Ca++ binding and membrane fluidity in essential and renal hypertension.Clin Sci 1982;63:281–284.

    PubMed  CAS  Google Scholar 

  34. Montenay-Garestier T, Aragon I, Devynck K, Peyer P, Helene C. Evidence for structural changes in erythrocyte membranes of spontaneously hypertensive rats. A fluorescence polarization study.Biochem Biophys Res Commun 1981;100:600–665.

    Article  Google Scholar 

  35. Ollerenshaw JD, Heagerty AM, Bing RF, Swales JD. Abnormalities of erythrocyte membrane fatty acid composition in human essential hypertension.J Hum Hypertens 1987; 1:9–12.

    PubMed  CAS  Google Scholar 

  36. Levy R, Paran E, Keynan A, Livine A. Essential hypertension: Improved differentiation by the temperature dependence of Li efflux in erythrocytes.Hypertension 1983;5:821–827.

    PubMed  CAS  Google Scholar 

  37. Bing RF, Heagerty AM, Thurston H, Swales JD. Ion transport in hypertension: Are changes in the cell membrane responsible?Clin Sci 1986;71:225–230.

    PubMed  CAS  Google Scholar 

  38. Brand SC, Whittam R. The effect of furosemide in sodium movements in human red cells.J Physiol 1984;348:301–306.

    PubMed  CAS  Google Scholar 

  39. Kimelberg HK. Alterations in phospholipid dependent (Na++K+) ATPase activity due to fluid lipidity.Biochim Biophys Acta 1975;413:143–156.

    Article  PubMed  CAS  Google Scholar 

  40. Wiley JS, Cooper RA. Inhibition of cation co-transport by cholesterol enrichment of human red cell membranes.Biochem Biophys Acta 1975;413:425–431.

    Article  PubMed  CAS  Google Scholar 

  41. Mulvany MJ, Nyborg N. An increased calcium sensitivity of mesenteric resistance vessels in young and adult spontaneously hypertensive rats.Br J Pharmacol 1980;71:585–596.

    PubMed  CAS  Google Scholar 

  42. Bing RF, Heagerty AM, Swales JD. Membrane handling of calcium in essential hypertension.J Hypertens 1987;5(Suppl 4):S29-S35.

    Article  CAS  Google Scholar 

  43. Holloway ET, Bohr DF. Reactivity of vascular smooth muscle in hypertensive rats.Circ Res 1973;33:678–695.

    PubMed  CAS  Google Scholar 

  44. Heagerty AM, Ollerenshaw JD. The phosphoinositide signalling system and hypertension.J Hypertens 1987;5:515–524.

    Article  PubMed  CAS  Google Scholar 

  45. Mahnensmith RL, Aronsen PS. The plasma membrane sodium-hydrogen exchanger and its role in physiological and pathophysiological processes.Circ Res 1985;56:773–788.

    PubMed  CAS  Google Scholar 

  46. Heagerty AM, Ollerenshaw JD, Swales JD. Abnormal vascular phosphoinositide hydrolysis in the spontaneously hypertensive rat.Br J Pharmacol 1986;89:803–807.

    PubMed  CAS  Google Scholar 

  47. Riozzi A, Heagerty AM, Ollerenshaw JD, Swales JD. Erythrocyte phosphoinositide metabolism in essential hypertensive patients and their normotensive offspring.Circ Sci 1987;73:29–32.

    CAS  Google Scholar 

  48. Izzard AS, Heagerty AM. Measurement of internal pH in resistance arterioles: Evidence that intracellular pH is more alkaline in SHR than WKY animals.Clin Sci 1988;75:47.

    Google Scholar 

  49. Lais LT, Brady MJ. Vasoconstrictor hyperresponsiveness: An early pathogenic mechanism in the spontaneously hypertensive rat.Eur J Pharmacol 1978;47:177–189.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swales, J.D. Membrane transport of ions in hypertension. Cardiovasc Drug Ther 4 (Suppl 2), 367–372 (1990). https://doi.org/10.1007/BF02603178

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02603178

Key Words

Navigation