Skip to main content
Log in

Influence of electrode impedance on threshold voltage for transcranial electrical stimulation in motor evoked potential monitoring

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Motor potentials evoked by transcranial electrical stimulation (TES) are used for monitoring the motor pathways, with emphasis on the spinal cord and brainstem. The stimulus voltage threshold is the voltage below which no motor response can be elicited. It has frequently been used as a monitoring parameter. However, its value can be limited, because it is affected by the impedance of the stimulus electrode. For example, the voltage threshold can change owing to formation of oedema of the scalp. The relationship between the TES voltage threshold and the electrode impedance of different electrode types was studied and discussed in the context of neuromonitoring: 323 impedance and voltage threshold pairs were studied, and TES was performed with dics cup EEG electrodes (six), corkscrew electrodes (type I: seven, type II: eight), multiple EEG needle electrodes (16) and a large needle electrode Cz′ (anode) together with a ground strip over the forehead (cathode) (286). The study found the voltage threshold to be strongly dependent on electrode impedance when the impedance was higher than 460 Μ (correlation: R2=0.87; p<0.001). Below 460Ω, which included 91% of the category with the largest electrode surfaces, 25% of the multiple EEG electrodes and 75% of type II corkscrew electrodes, no significant correlation (R2=0.0064; p=0.15) was found. It was concluded that the correlation between the TES voltage threshold and electrode impedance can be markedly reduced by using TES electrodes with large contact surfaces, resulting in limit values for these parameters. This also may improve the reliability of TES motor evoked potential monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Burke, D., Hicks, R., andStephen, J. (1992): ‘Anodal and cathodal stimulation of the upper-limb area of the human motor cortex’,Brain,115, pp. 1497–1508

    Article  Google Scholar 

  • Calancie, B., Harris, W., Broton, J. G., Alexeeva, N., andGreen, B. A. (1998): ‘‘Threshold-level’ multipulse transcranial electrical stimulation of motor cortex for intraoperative monitoring of spinal motor tracts: description of method and comparison to somatosensory evoked potential monitoring’,J. Neurosurg.,88, pp. 457–470

    Article  Google Scholar 

  • Calancie, B., Harris, W., Brindle, G. F., Green, B. A., andLandy, H. J. (2001): ‘Threshold-level repetitive transcranial electrical stimulation for intraoperative monitoring of central motor conduction’,J. Neurosurg.,95, pp. 161–168

    Google Scholar 

  • Deletis, V., andCamargo, A. B. (2001): ‘Transcranial electrical motor evoked potential monitoring for brain tumor resection’,Neurosurgery,49, pp. 1488–1489

    Article  Google Scholar 

  • Foster, K. R., Schepps, J. L., Stoy, R. D., andSchwan, H. P. (1979): ‘Dielectric properties of brain tissue between 0.01 and 10 GHz’,Phys. Med. Biol.,24, pp. 1177–1187

    Article  Google Scholar 

  • Geddes, L. A., andBaker, L. E. (1967): ‘The specific resistance of biological material—a compendium of data for the biomedical engineer and physiologist’,Med. Biol. Eng.,5, pp. 271–293

    Article  Google Scholar 

  • Geddes, L. A. (1987): ‘Optimal stimulus duration for extracranial cortical stimulation’,Neurosurgery,20, pp. 94–99

    Article  Google Scholar 

  • Hicks, R. G., Woodforth, I. J., Crawford, M. R., Stephen, J. P., andBurke, D. J. (1992): ‘Some effects of isoflurane on I waves of the motor evoked potential’,Br. J. Anaesth.,69, pp. 130–136

    Article  Google Scholar 

  • Journee, H. L., Shils, J., Bueno de Camargo, A., Novak, K., andDeletis, V. (2003): ‘Failure of Digitimer's D-185 transcranial stimulator to deliver declared stimulus parameters’,Clin. Neurophysiol.,114, pp. 2497–2498

    Article  Google Scholar 

  • Kalkman, C. J., Ubags, L. H., Been, H. D., Swaan, A., andDrummond, J. C. (1995): ‘Improved amplitude of myogenic motor evoked responses after paired transcranial electrical stimulation during sufentanil/nitrous oxide anesthesia’,Anesthesiology,83 pp. 270–276

    Article  Google Scholar 

  • Kothbauer, K., Deletis, V., andEpstein, F. J. (1997): ‘Intraoperative spinal cord monitoring for intramedullary surgery: an essential adjunct’,Pediatr. Neurosurg.,26, pp. 247–254

    Article  Google Scholar 

  • McAdams, E. T., andJossinet, J. (1994): ‘Physical interpretation of Schwan's limit voltage of linearity’,Med. Biol. Eng. Comput.,32, pp. 126–130

    Article  Google Scholar 

  • Merton, P. A., andMorton, H. B. (1980): ‘Stimulation of the cerebral cortex in the intact human subject’,Nature,285, p. 227

    Article  Google Scholar 

  • Merton, P. A., Hill, D. K., Morton, H. B., andMarsden, C. D. (1982): ‘Scope of a technique for electrical stimulation of human brain, spinal cord, and muscle’,Lancet,2, pp. 597–600

    Article  Google Scholar 

  • Meylaerts, S. A., De-Haan, P., Kalkman, C. J., Lips, J., De-Mol, B. A., andJacobs, M. J. (1999): ‘The influence of regional spinal cord hypothermia on transcranial myogenic motor-evoked potential monitoring and the efficacy of spinal cord ischemia detection’,J. Thorac. Cardiovasc. Surg.,118, pp. 1038–1045

    Article  Google Scholar 

  • Pechstein, U., Cedzich, C., Nadstawek, J., andSchramm, J. (1996): ‘Transcranial high-frequency repetitive electrical stimulation for recording myogenic motor evoked potentials with the patient under general anesthesia’,Neurosurgery,39, pp. 335–343

    Article  Google Scholar 

  • Poletto, C. J., andVan Doren, C. L. (1999): ‘A high voltage, constant current stimulator for electrocutaneous stimulation through small electrodes’,IEEE Trans. Biomed. Eng.,46, pp. 929–936

    Article  Google Scholar 

  • Saha, S., andWilliams, P. A. (1995): ‘Comparison of the electrical and dielectric behavior of wet human cortical and cancellous bone tissue from the distal tibia’,J. Orthop. Res.,13, pp. 524–532

    Article  Google Scholar 

  • Stoy, R. D., Foster, K. R., andSchwan, H. P. (1982): ‘Dielectric properties of mammalian tissues from 0.1 to 100 MHz: a summary of recent data’,Phys. Med. Biol.,27, pp. 501–513

    Article  Google Scholar 

  • Ubags, L. H., Kalkman, C. J., Been, H. D., andDrummond, J. C. (1996): ‘The use of a circumferential cathode improves amplitude of intraoperative electrical transcranial myogenic motor evoked responses’,Anesth. Analg.,82, pp. 1011–1014

    Article  Google Scholar 

  • Ubags, L. H., Kalkman, C. J., Been, H. D., andDrummond, J. C. (1997): ‘Differential effects of nitrous oxide and propofol on myogenic transcranial motor evoked responses during sufentanil anaesthesia’,Br. J. Anaesth.,79, pp. 590–594

    Google Scholar 

  • Van-Dongen, E. P., Ter-Beek, H. T., Schepens, M. A., Morshuis, W. J., Langemeijer, H. J., Kalkman, C. J., andBoezeman, E. H. (1999): ‘The influence of nitroux oxide to supplement fentanyl/low-dose propofol anesthesia on transcranial myogenic motor-evoked potentials during thoracic aortic surgery’,J. Cardiothorac. Vasc. Anesth.,13, pp. 30–34

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. L. Journée.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Journée, H.L., Polak, H.E. & de Kleuver, M. Influence of electrode impedance on threshold voltage for transcranial electrical stimulation in motor evoked potential monitoring. Med. Biol. Eng. Comput. 42, 557–561 (2004). https://doi.org/10.1007/BF02350999

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02350999

Keywords

Navigation