Skip to main content
Log in

Electrophysiological assessment of the human depth-perception threshold

  • Original Investigations
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

The cortical response to stereoscopic stimuli was measured as a function of disparity using visual evoked potentials (VEP). The stereoscopic stimulus consisted of a dynamic random-dot pattern that portrayed a three-dimensional horizontal grating. Disparity of the grating was variable between 0 and 18 arc min, step size being 4.22 arc s. Evoked responses were recorded using a “random-sequence sweep technique.” The VEP amplitude increased approximately linearly with the logarithm of disparity and allowed an estimation of the stereo threshold by linear extrapolation. The evoked potential estimates of the stereo threshold of 16 subjects were compared to psychophysically obtained thresholds. Several threshold-estimation techniques are discussed. Evoked potential and psychophysical threshold estimates had the lowest discrepancy when the VEP amplitude was linearly extrapolated to the logarithmic disparity axis. The difference between the evoked potential estimate and the psychophysical threshold was less than 20% in 56% of all cases; 16 of 18 cases (89%) agreed within a factor of 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beverley KI, Regan D (1973) Visual sensitivity to disparity pulses: evidence for directional selectivity. Vision Res 14:357–361

    Google Scholar 

  • Bouldin DW, Bourne JR, Fox R (1975) Lambda waves elicited by Cyclopean contour movement. Paper presented at the ARVO Conference, Sarasota

  • Braddick O, Atkinson J, Julesz B, Kropfl W, Bodis-Wollner I, Raab E (1980) Cortical binocularity in infants. Nature 288:363–365

    Article  CAS  PubMed  Google Scholar 

  • Campbell FW, Kulikowski JJ (1972) The visual evoked potential as a function of contrast of a grating pattern. J Physiol 222:345–356

    CAS  PubMed  Google Scholar 

  • Campbell FW, Maffei L (1970) Electrophysiological evidence for the existence of orientation and size detectors in the human visual system. J Physiol 207:635–652

    CAS  PubMed  Google Scholar 

  • Cannon MW (1983) Contrast sensitivity: psychophysical and evoked potentials compared. Vision Res 23:87–96

    PubMed  Google Scholar 

  • Cornsweet TN (1962) The staircase-method in psychophysics. Am J Psychol 75:485–491

    CAS  PubMed  Google Scholar 

  • Fiorentini A, Maffei L (1970) Electrophysiological evidence for binocular disparity detectors in human visual system. Science 169:208–209

    CAS  PubMed  Google Scholar 

  • Herpers MJ, Caberg HB, Mol JMF (1981) Human cerebral potentials evoked by moving dynamic random-dot stereograms. Electroencephalogr Clin Neurophysiol 52:50–56

    CAS  PubMed  Google Scholar 

  • Julesz B, Kropfl W (1982) Binocular neurons and cyclopean visually evoked potentials in monkey and man. Ann NY Acad Sci 388:37–44

    CAS  PubMed  Google Scholar 

  • Julesz B, Breitmeyer GB, Kropfl W (1976) Binocular-disparity-dependant upper-lower hemifield anisoptropy and left-right hemifield isotropy as revealed by dynamic random-dot stereograms. Perception 5:129–141

    CAS  PubMed  Google Scholar 

  • Julesz B, Kropfl W, Petrig BL (1980) Large evoked potentials to dynamic random dot correlograms and stereograms permit quick determination of stereopsis. Proc Natl Acad Sci USA 77: 2348–2351

    CAS  PubMed  Google Scholar 

  • Klingenberger HJ (1987) Objektive Bestimmung der räumlichen Wahrnehmungsschwelle des menschlichen Auges mit Hilfe visuell evozierter Potentiale. Dissertation, University of Hamburg

  • Lehmann D, Julesz B (1978) Lateralized cortical potentials evoked in humans by dynamic random-dot stereograms. Vision Res 18:1265–1271

    Article  CAS  PubMed  Google Scholar 

  • Miller RG (1974) The jackknife: a review. Biometrika 61:1–15

    Google Scholar 

  • Norcia AM, Stevenson SB (1982) Temporal modulation transfer functions for changing disparities in global stereopsis. Invest Ophthalmol Vis Sci [Suppl] 22:125

    Google Scholar 

  • Norcia AM, Tyler CW (1984) Temporal frequency limits for stereoscopic apparent motion processes. Vision Res 24:395–401

    Article  CAS  PubMed  Google Scholar 

  • Norcia AM, Tyler CW (1985) Spatial frequency sweep VEP: visual acuity during the first year of life. Vision Res 25:1399–1408

    CAS  PubMed  Google Scholar 

  • Norcia AM, Sutter EE, Tyler CW (1985) Electrophysiological evidence for the existence of coarse and fine disparity mechanisms in human. Vision Res 25:1603–1611

    CAS  PubMed  Google Scholar 

  • Odom JV, Chao G (1985) Stereoacuity: a preliminary comparison of VEP and behavioral thresholds. Non-invasive assessment of the visual system. Technical Digest 1986. Optical Society of America, Washington, DC, MD31-MD34

    Google Scholar 

  • Petrig BL (1980) Nachweis von Stereopsis bei Kindern mittels stochastischer Punktstereogramme und der zugehörigen evozierten Potentiale. Dissertation, ETHZ, University of Zürich

  • Petrig BL, Julesz B, Kropfl W, Baumgartner G, Anliker M (1981) Development of stereopsis and cortical binocularity in human infants: electrophysiological evidence. Science 213:1402–1405

    CAS  PubMed  Google Scholar 

  • Petrig BL, Julesz B, Lehmann D, Lang J (1982) Assessment of stereopsis in infants and children, using dynamic random-dot pattern evoked potentials. Doc Ophthalmol Proc Ser 31:477–482

    Google Scholar 

  • Regan D (1980) Speedy evoked potential methods for assessing vision in normal and amblyopic eyes: pros and cons. Vision Res 20:265–269

    Article  CAS  PubMed  Google Scholar 

  • Regan D, Beverley KI (1973) Electrophysiological evidence for existence of neurones sensitive to direction of depth movement. Nature 246:504–506

    Article  CAS  PubMed  Google Scholar 

  • Regan D, Spekreijse H (1970) Electrophysiological correlate of binocular depth perception in man. Nature 225:92–94

    Article  CAS  PubMed  Google Scholar 

  • Simon F, Rassow B (1986) Retinal visual acuity with pattern VEP: normal subjects and reproducibility. Graefe's Arch Clin Exp Ophthalmol 224:160–164

    Article  CAS  Google Scholar 

  • Teping C, Murr G, Pesch T (1984) Untersuchungen zum Nachweis des Binokularsehens und der Stereopsis durch Ableitung visuell evozierter kortikaler Potentiale (VECP). Bücherei Augenarztes 98:175–180

    Google Scholar 

  • Tyler CW, Apkarian P, Levi DM, Nakayama K (1979) Rapid assessment of visual function: an electronic sweep technique for the pattern visual evoked potential. Invest Ophthalmol Vis Sci 18:703–713

    CAS  PubMed  Google Scholar 

  • Tyler CW, Nakayama K, Apkarian PA, Levi DE (1980) VEP assessment of visual function. Vision Res 21:607–609

    Google Scholar 

  • Vomberg HE, Skrandies W (1985) Untersuchung des Stereosehens im Zufallspunktmuster-VECP: Normbefunde und klinische Anwendung. Klin Monatsbl Augenheilkd 187:205–208

    CAS  PubMed  Google Scholar 

  • White KD, Odom JV (1985) Temporal integration in global stereopsis. Perception Psychophys 37:139–144

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wesemann, W., Klingenberger, H. & Rassow, B. Electrophysiological assessment of the human depth-perception threshold. Graefe’s Arch Clin Exp Ophthalmol 225, 429–436 (1987). https://doi.org/10.1007/BF02334171

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02334171

Keywords

Navigation