Skip to main content
Log in

Building an identifiable latent class model with covariate effects on underlying and measured variables

  • Theory And Methods
  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

In recent years, latent class models have proven useful for analyzing relationships between measured multiple indicators and covariates of interest. Such models summarize shared features of the multiple indicators as an underlying categorical variable, and the indicators' substantive associations with predictors are built directly and indirectly in unique model parameters. In this paper, we provide a detailed study on the theory and application of building models that allow mediated relationships between primary predictors and latent class membership, but that also allow direct effects of secondary covariates on the indicators themselves. Theory for model identification is developed. We detail an Expectation-Maximization algorithm for parameter estimation, standard error calculation, and convergent properties. Comparison of the proposed model with models underlying existing latent class modeling software is provided. A detailed analysis of how visual impairments affect older persons' functioning requiring distance vision is used for illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agresti, A. (1984).Analysis of Categorical Data. New York: John Wiley and Sons.

    Google Scholar 

  • Akaike, H. (1987). Factor analysis and AIC.Psychometrika, 52, 317–332.

    Google Scholar 

  • Baker, S.G., & Laird, N.M. (1988). Regression analysis for categorical variables with outcome subject to nonignorable nonresponse.Journal of the American Statistical Association, 83, 62–69.

    Google Scholar 

  • Bandeen-Roche, K., Huang, G.H., Munoz, B., & Rubin, G.S. (1999). Determination of risk factor associations with questionnaire outcomes: A methods case study.American Journal of Epidemiology, 150, 1165–1178.

    Google Scholar 

  • Bandeen-Roche, K., Miglioretti, D.L., Zeger, S.L., & Rathouz, P.J. (1997). Latent variable regression for multiple discrete outcomes.Journal of the American Statistical Association, 92, 1375–1386.

    Google Scholar 

  • Bollen, K. (1989).Structural Equations with Latent Variables. New York: John Wiley and Sons.

    Google Scholar 

  • Clogg, C.C., & Goodman, L.A. (1984). Latent structure analysis of a set of multidimensional contingency tables.Journal of the American Statistical Association, 79, 762–771.

    Google Scholar 

  • Clogg, C.C., & Goodman, L.A. (1985). Simultaneous latent structure analysis in several groups. InSociological Methodology 1985, Tuma N.B. (Ed.), 81–110. San Francisco: Jossey-Bass.

    Google Scholar 

  • Dayton, C.M., & Macready, G.B. (1988). Concomitant-variable latent-class models.Journal of the American Statistical Association, 83, 173–178.

    Google Scholar 

  • Dempster, A.P., Laird, N.M., & Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm.Journal of the Royal Statistical Society, Series B, 39, 1–38.

    Google Scholar 

  • Eaton, W. W., Dryman, A., Sorenson, A., & McCutcheon, A. (1989). DSM-III major depressive disorder in the community—A latent class analysis of data from the NIMH epidemiologic catchment-area program.British Journal of Psychiatry, 155, 48–54.

    Google Scholar 

  • Efron, B., & Hinkley, D.V. (1978). Assessing the acuracy of the maximum likelihood estimator: Observed versus expected Fisher information.Biometrika, 65, 457–487.

    Google Scholar 

  • Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). Mini-mental state: A practical method for grading the cognitive state of patients for the clinician.Journal of Psychiatric Research, 12, 189.

    Google Scholar 

  • Formann, A.K. (1985). Constrained latent class models: Theory and applications.British Journal of Mathematical and Statistical Psychology, 38, 87–111.

    Google Scholar 

  • Formann, A.K. (1992). Linear logistic latent class analysis for polytomous data.Journal of the American Statistical Association, 87, 476–486.

    Google Scholar 

  • Garrett, E.S., & Zeger, S.L. (2000). Latent class model diagnosis.Biometrics, 56, 1055–1067.

    Google Scholar 

  • Goldberg, D. (1972).GHQ The Selection of Psychiatric Illness by Questionnaire. London: Oxford University Press.

    Google Scholar 

  • Goodman, L.A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models.Biometrika, 61, 215–231.

    Google Scholar 

  • Graybill, F.A. (1969).Introduction to Matrices with Applications in Statistic, Belmont, CA: Wadsworth.

    Google Scholar 

  • Green, B.F. (1951). A general solution of the latent class model of latent structure analysis and latent profile analysis.Psychometrika, 16, 151–166.

    Google Scholar 

  • Haberman, S.J. (1974). Log-linear models for frequency tables derived by indirect observation: Maximum likelihood equations.Annals of Statistics, 2, 911–924.

    Google Scholar 

  • Haberman, S.J. (1979).Analysis of Qualitative Data. Vol. 2: New Developments. New York: Academic Press.

    Google Scholar 

  • Hagenaars, J.A. (1993).Loglinear Models with Latent Variables. Sage University Paper Series on Quantitative Applications in the Social Sciences, series no. 07-094. Newbury Park, CA: Sage.

    Google Scholar 

  • Hambleton, R.K., Swaminathan, H., & Rogers, H.J. (1991).Fundamentals of Item Response Theory. Newbury Park, CA: Sage.

    Google Scholar 

  • Huang, G.H., Bandeen-Roche, K., & Rubin, G.S. (2002). Building marginal models for multiple ordinal measurements.Applied Statistics, 51, 37–57.

    Google Scholar 

  • Hudziak, J.J., Heath, A.C., Madden, P.F., Reich, W., Bucholz, K.K., Slutske, W., Bierut, L.J., Neuman, R.J., & Todd, R.D. (1998). Latent class and factor analysis of DSM-IV ADHD: A twin study of female adolescents.Journal of the American Academy of Child and Adolescent Psychiatry, 37, 848–857.

    Google Scholar 

  • Jette, A.M., & Branch, L.G. (1985). Impairment and disability in the aged.J Chronic Dis, 38, 59–65.

    Google Scholar 

  • Jöreskog, K.G., & Goldberger, A.S. (1975). Estimation of a model with multiple indicators and multiple causes of a single latent variable.Journal of the American Statistical Association, 70, 631–639.

    Google Scholar 

  • Katz, S., Ford, A.B., Moskowitz, R.W., Jackson, B.A., & Jaffer, M.W. (1963). Studies of illness in the age. The index of ADL: A standardized measure of biological and psychosocial function.Journal of the American Medical Association, 185, 914–918.

    Google Scholar 

  • Lange, K. (1995). A gradient algorithm locally equivalent to the EM algorithm.Journal of the Royal Statistical Society, Series B, 57, 425–437.

    Google Scholar 

  • Lazarsfeld, P.F., & Henry, N.W. (1968).Latent Structure Analysis. New York: Houghton-Mifflin.

    Google Scholar 

  • Legler, J.M., & Ryan, L.M. (1997). Latent variable models for teratogenesis using multiple binary outcomes.Journal of the American Statistical Association, 92, 13–20.

    Google Scholar 

  • Little, R.J.A., & Rubin, D.B. (1987).Statistical Analysis with Missing Data. New York: John Wiley and Sons.

    Google Scholar 

  • Louis, T.A. (1982). Finding the observed information matrix when using the EM algorithm.Journal of the Royal Statistical Society, Series B, 44, 226–233.

    Google Scholar 

  • Magidson J., & Vermunt, J.K. (2001). Latent class factor and cluster models, bi-plots, and related graphical displays. InSociological Methodology 2001, Stolzenberg R.M. (ed), 223–264. Boston: Blackwell.

    Google Scholar 

  • Mangione, C.M., Phillips, R.S., Seddon, J.M., Lawrence, M.G., Cook, E.F., Dailey, R., & Goldman, L. (1992). Development of the “activities of daily vision” scale: A measurement of visual functional status.Medical Care, 30, 1111–1126.

    Google Scholar 

  • McCullagh, P., & Nelder, J.A. (1989).Generalized Linear Models, 2nd edition. London: Chapman and Hall.

    Google Scholar 

  • McCutcheon, A. C. (1987).Latent Class Analysis. Sage University Paper Series on Quantitative Applications in the Social Sciences, series no. 07-064. Beverly Hills, CA: Sage.

    Google Scholar 

  • McHugh, R.B. (1956). Efficient estimation and local identification in latent class analysis.Psychometrika, 21, 331–347.

    Google Scholar 

  • McLachlan G.J., & Krishnan T. (1996).The EM Algorithm and Extensions. New York: John Wiley and Sons.

    Google Scholar 

  • Melton, B., Liang, K.Y., & Pulver, A.E. (1994). Extended latent class approach to the study of familial/sporadic forms of a disease: Its application to the study of the heterogeneity of schizophrenia.Genetic Epidemiology, 11, 311–327.

    Google Scholar 

  • Moustaki, I. (1996). A latent trait and a latent class model for mixed observed variables.British Journal of Mathematical and Statistical Psychology, 49, 313–334.

    Google Scholar 

  • Muthén, B. (1983). Latent variable structural equation modeling with categorical data.Journal of Econometrics, 22, 43–65.

    Google Scholar 

  • Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical and continuous latent variable indicators.Psychometrika, 49, 115–132.

    Google Scholar 

  • Muthén, L.K., & Muthén, B.O. (1998).Mplus User's Guide. Los Angeles, CA: Muthén & Muthén.

    Google Scholar 

  • Muthén, B., & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using EM algorithm.Biometrics, 55, 463–469.

    Google Scholar 

  • Neuman, R.J., Heath, A., Reich, W., Bucholz, K.K., Madden, P.A.F., Sun, L., Todd, R.D., & Hudziak, J.J. (2001). Latent class analysis of ADHD and comorbid symptoms in a population sample of adolescent female twins.Journal of Child Psychology and Psychiatry and Allied Disciplines, 42, 933–942.

    Google Scholar 

  • Piantadosi, S. (1997).Clinical Trials: A Methodologic Perspective. New York: John Wiley and Sons.

    Google Scholar 

  • Rasch, G. (1960).Probabilistic Models for Some Intelligence and Attainment Tests. Chicago: University of Chicago Press.

    Google Scholar 

  • Roeder, K., Lynch, K.G., & Nagin, D.S. (1999). Modeling uncertainty in latent class membership: A case study in criminology.Journal of the American Statistical Association, 94, 766–776.

    Google Scholar 

  • Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to item analysis.Applied Psychological Measurement, 14, 271–282.

    Google Scholar 

  • Rost, J. (1991). A logistic mixture distribution model for polychotomous item responses.British Journal of Mathematical and Statistical Psychology, 44, 75–92.

    Google Scholar 

  • Rubin, G.S., Bandeen-Roche, K., Huang, G.H., Munoz, B., Schein, O.D., Fried, L.P., & West, S.K. (2001). The association of multiple visual impairments with self-reported visual disability: SEE project.Investigative Ophthalmology and Visual Science, 42, 64–72.

    Google Scholar 

  • Rubin, G.S., West, S.K., Munoz, B., Bandeen-Roche, K., Zeger, S.L., Schein, O., & Fried, L.P. (1997). A comprehensive assessment of visual impairment in an older American population: SEE study.Investigative Ophthalmology and Visual Science, 38, 557–568.

    Google Scholar 

  • Sammel, M.D., Ryan, L.M., & Legler, J.M. (1997). Latent variable models for mixed discrete and continuous outcomes.Journal of the Royal Statistical Society, Series B, 59, 667–678.

    Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model.Annals of Statistics, 6, 461–464.

    Google Scholar 

  • Statistical Sciences, Inc. (1995).S-PLUS User's Manual, Version 3.3 for Windows. Seattle: Statistical Sciences, Inc.

    Google Scholar 

  • Sullivan, P.F., Kessler, R.C., & Kendler, K.S. (1998). Latent class analysis of lifetime depressive symptoms in national comorbidity survey.American Journal of Psychiatry, 155, 1398–1406.

    Google Scholar 

  • Uebersax, J. (1993). Statistical modeling of expert ratings on medical treatment appropriateness.Journal of the American Statistical Association, 88, 421–427.

    Google Scholar 

  • Valbuena, M., Bandeen-Roche, K., Rubin, G.S., Munoz, B., West, S.K., and SEE Project Team (1999). Self-reported assessment of visual functioning in a population based setting.Investigative Ophthalmology and Visual Science, 40, 280–288.

    Google Scholar 

  • Van der Heijden, P.G.M., Dessens, J., & Böckenholt, U. (1996). Estimating the concomitant-variable latent-class model with the EM algorithm,Journal of Educational and Behavioral Statistics, 21, 215–229.

    Google Scholar 

  • Vermunt, J.K. (1996).Log-linear Event History Analysis: A General Approach with Missing Data, Unobserved Heterogeneity, and Latent Variables. Tilburg: Tilburg University Press.

    Google Scholar 

  • Vermunt, J.K., & Magidson, J. (2000).Latent GOLD 2.0 User's Guide. Belmont, MA: Statistical Innovations Inc.

    Google Scholar 

  • West, S.K., Munoz, B., Rubin, G.S., Schein, O.D., Bandeen-Roche, K., Zeger, S., German, P.S., & Fried, L.P. (1997). Function and visual impairment in a population-based study of older adults: SEE project.Investigative Ophthalmology and Visual Science, 38, 72–82.

    Google Scholar 

  • Wu, C.F. (1983). On the convergence properties of the EM algorithm.Annals of Statistics, 11, 95–103.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by National Institute on Aging (NIA) Program Project P01-AG-10184-03 and National Institutes of Mental Health grant R01-MH-56639-01A1. Dr. Bandeen-Roche is a Brookdale National Fellow. The authors wish to thank Drs. Gary Rubin and Sheila West for kindly making the Salisbury Eye Evaluation data available. We also thank the Editor, the Associate Editor, and three referees for their valuable comments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, GH., Bandeen-Roche, K. Building an identifiable latent class model with covariate effects on underlying and measured variables. Psychometrika 69, 5–32 (2004). https://doi.org/10.1007/BF02295837

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02295837

Key words

Navigation