Skip to main content
Log in

From oocyte to neuron: Do neurotransmitters function in the same way throughout development?

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    Classical neurotransmitters (such as acetylcholine, biogenic amines, and GABA) are functionally active througout ontogenesis.

  2. 2.

    Based on accumulated evidence, reviewed herein, we present an hypothetical scheme describing developmental changes in this functional activity, from the stage of maturing oocytes through neuronal differentiation. This scheme reflects not only the spatio-temporal sequence of these changes, but also the genesis of neurotransmitter functions, from “protosynapses” in oocytes and cleaving embryos to the development of functional neuronal synapses.

  3. 3.

    Thus, it appears that neurotransmitters participate in various forms of intra- and intercellular signalling throughout all stages of ontogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelmajid, H., Rivaillier, P., Krantic, S., and Guerrier, P. (1994). Differences in tyrosine phosphorylation of oocyte key proteins during 5-HT-induced meiosis reinitiation in two bivalve species.Exp. Cell Res. 212:422–425.

    PubMed  Google Scholar 

  • Alder, J., Lu, B., Valtorta, F., Greengard, P., and Poo, M. M. (1992). Calcium-dependent transmitter secretion reconstituted inXenopus oocytes: Requirement for synaptophysin.Science 257:657–661.

    PubMed  Google Scholar 

  • Arellano, R. O., and Miledi, R. (1993). Novel Cl-currents elicited by follicle stimulating hormone and acetylcholine in follicle-enclosedXenopus oocytes.J. Gen. Physiol. 102:833–857.

    PubMed  Google Scholar 

  • Baker, M. W., Vohra, M. M., and Croll, R. P. (1993). Serotonin depletors, 5,7-dihydroxytryptamine and p-chlorophenylalanine, cause sprouting in the CNS of the adult snail.Brain Res. 623:311–315.

    PubMed  Google Scholar 

  • Bodis, J., Torok, A., Tinneberg, H. R., Hanf, V., Hamori, M., and Cledon, P. (1992). Influence of serotonin on progesterone and estradiol secretion of cultured human granulosa cells.Fertil. Steril. 57:1008–1011.

    PubMed  Google Scholar 

  • Bodis, J., Hartmann, G., Torok, A., Bognar, Z., Tinneberg, H. R., Cledon, P., and Hanf, V. (1993a). Relationship between the monoamine and gonadotropine contents in follicular fluid of preovulatory graafian follicles after superovulation treatment.Exp. Clin. Endocrinol. 101:178–182.

    PubMed  Google Scholar 

  • Bodis, J., Tinneberg, H. R., Torok, A., Cledon, P., Hanf, V., and Pappenfuss, F. (1993b). Effects of noradernaline and dopamine on progesterone and estradiol secretion of human granulosa cells.acta Endocrinol. Copenh. 129:65–168.

    PubMed  Google Scholar 

  • Brandes, L. J., La Bella, F. S., Glavin, G. B., Paraskevas, F., Saxena, S. P., McNicol, A., and Gerrard, J. M. (1990). Histamine as an intracellular messenger.Biochem. Pharmacol. 40:1677–1681.

    PubMed  Google Scholar 

  • Brandes, L. J., Davie, J. P., Paraskevas, F., Sukhu, F., Bogdanovic, R. P., and LaBella, F. S. (1991). The antiproliferative potency of histamine antagonists correlates with inhibition of binding of [H3]-histamine to novel intracellular receptors (HIC) in microsomal and nuclear fractions of rat liver.Agents Actions. Suppl. 33:325–342.

    PubMed  Google Scholar 

  • Brandes, L. J., Bogdanovic, R. P., Tong, J., Davie, J. R., and LaBella, F. S. (1992). Intracellular histamine and liver regeneration: high affinity binding of histamine to chromatine, low affinity binding to matrix, and depletion of a nuclear storage pool following partial hepatectomy.Biochem. Biophys. Res. Commun. 184:840–847.

    PubMed  Google Scholar 

  • Brandes, L. J., Simons, K. J., Bracken, S. P., and Warrington, R. C. (1994). Results of a clinical trial in humans with refractory cancer of the intracellular histamine antagonist, N,N-diethyl-2[4-(phenylmethyl)phenoxy]ethamine-HCl in combination with various single antineoplastic agents.J. Clin. Oncol. 12:1281–1290.

    PubMed  Google Scholar 

  • Brown, K. M., and Shaver, J. R. (1987). Subcellular distribution of [3H]serotonin binding sites in blastula, gastrula, prism and pluteus sea urchin embryos.Comp. Biochem. Physiol. 87C:139–148.

    Google Scholar 

  • Brown, K. M., and Shaver, J. R. (1989). [3H]Serotonin binding to blastula, gastrula, prism and pluteus sea urchin embryo cells.Comp. Biochem. Physiol. 93C:281–285.

    Google Scholar 

  • Budnik, V., Wu, C. F., and White, K. (1989). Altered branching of serotonin-containing neurons inDrosophila mutants unable to synthesize serotonin and dopamine.J. Neurosci. 9:2866–2877.

    PubMed  Google Scholar 

  • Burden, R. W., and Lawrence, I. E. (1973): Presence of biogenic amines in early rat development.Am. J. Anat. 136:251–257.

    PubMed  Google Scholar 

  • Burke, R. D., and Gibson, A. W. (1986). Cytological techniques for the study of larval echinoids with notes on methods for inducing methamorphosis.Methods Cell Biol. 27:295–308.

    PubMed  Google Scholar 

  • Buznikov, G. A. (1967).Low Molecular Weight Regulators in Embryonic Development, Nauka, Moscow (in Russian).

    Google Scholar 

  • Buznikov, G. A. (1989). Transmitters in early embryogenesis: new data.Sov. J. Dev. Biol. 20:427–435.

    Google Scholar 

  • Buznikov, G. A. (1990a).Neurotransmitters in Embryogenesis, Chur, Academic Press, New York.

    Google Scholar 

  • Buznikov, G. A. (1990b). The biogeneic monoamines as regulators of early (pre-nervous) embryogenesis: New data. In Timiras, P. S., Privat, A., Giacobini, E., and Lauder, J. (eds.),Plasticity and Regeneration of the Nervous System, Plenum Press, New York and London, pp. 33–48.

    Google Scholar 

  • Buznikov, G. A., and Grigoriev, N. G. (1990). The effect of biogeneic monamines and their antagonists on the cortical cytoplasmic layer in early embryos of sea urchins.Zh. Evol. Biokhim. Fiziol. 26:614–622.

    Google Scholar 

  • Buznikov, G. A., and Shmukler, Yu. B. (1978). The effect of anti-mediator compounds on intercellular connections in early sea urchin embryos.Sov. J. Dev. Biol. 9:141–145.

    Google Scholar 

  • Buznikov, G. A., and Shmukler, Yu. B. (1981). The possible role of prenervous neurotransmitters in cellular interactions of early embryogenesis; A hypothesis.Neurochem. Res. 6:55–69.

    PubMed  Google Scholar 

  • Buznikov, G. A., Mal'chenko, L. A., NIkitina, L. A., Galanov, A. Yu., and Emanov, V. S. (1990a). Effect of neurotransmitters and their antagonists on oocyte maturation. 1. Effect of serotonin and its antagonists on the sensitivity of starfish oocytes to 1-methyladenine.Sov. J. Dev. Biol. 21:375–380.

    Google Scholar 

  • Buznikov, G. A., Mal'chenko, L. A., Nikitina, L. A., Galanov, A. Yu., Pogosyan, S. A., and Papayan, G. L. (1990b). Effect of neurotransmitters and their antagonists on oocyte maturation. 1. Effect of serotonin antagonists on the sensitivity of starfish oocytes to forskolin and ionomycine.Sov. J. Dev. Biol. 21:431–436.

    Google Scholar 

  • Buznikov, G. A., Martynova, L. E., Marshak, T. L., Galanov, A. Yu., Dungenova, R. E., Nikitina, L. A., Mileusnic, R., and Rakic, L. (1983a). The effect of protein kinase C activators and inhibitors MA on early echinoderm embryos.Russ. J. Dev. Biol. 24:172–181.

    Google Scholar 

  • Buznikov, G. A., Nikitina, L. A., Galanov, A. Yu., Malchenko, L. A., and Trubnikova, O. B. (1993b). The control of oocyte maturation in the starfish and amphibians by serotonin and its antagonists.Int. J. Dev. Biol. 37:363–364.

    PubMed  Google Scholar 

  • Cameron, R. A., Smith, L. C., Britten, R. J., and Davidson, E. H. (1994). Ligand-dependent stimulation of introduced mammalian receptors alters spicule symmetry and other morphogenetic events in sea urchin embryos.Mech. Dev. 45:31–47.

    PubMed  Google Scholar 

  • Capasso, A., Parisi, E., De Prisco, P., and De Petrocellis, B. (1987). Catecholamine secretion and adelylate cyclase activation in sea urchin eggs.Cell. Biol. Int. Rep. 11:457–463.

    PubMed  Google Scholar 

  • Capasso, A., Creti, P., De Petrocellis, B., De Prisco, P., and Parisi, E. (1988). Role of dopamine and indolamine derivatives in the regulation of sea urchin adenylate cyclase.Biochem. Biophys. Res. Commun. 154:758–764.

    PubMed  Google Scholar 

  • Cavalli, A., Dunant, Y., Leroy, C., Meunier, F.-M., Morel, N., and Israel, M. (1993). Antisense probes against mediatophore block transmitter release in oocytes primed with neuronal mRNAs.Eur. J. Neurosci. 5:1539–1544.

    PubMed  Google Scholar 

  • Coon, S. L., and Bonar, D. B. (1987). Pharmacological evidence that alphal-adrenoceptors mediate methamorphosis of the pacific oystei,Crassostrea gigas.Neuroscience 23:1169–1174.

    PubMed  Google Scholar 

  • Dan, Y., and Poo, M. M. (1992). Quantal transmitter secretion from myocytes loaded with acetylcholine.Nature 359:733–736.

    PubMed  Google Scholar 

  • Dascal, N., Landau, E., and Lass, Y. (1984). Xenopus oocyte resting potential, muscarinic responses and the role of calcium and guanosine 3′,5′-cyclic monophosphate.J. Physiol. (Lond.) 352:551–574.

    Google Scholar 

  • Dautov, S. Sh., and Nezlin, L. P. (1992). Nervous system of the Tornaria larva (Hemichordata: Enteropneusta). A histochemical and ultrastructural study.Biol. Bull. 183:463–475.

    Google Scholar 

  • Deridovich, I. I., and Reunova, O. V. (1993). Prostaglandins—Reproduction control in bivalve molluscs.Comp. Biochem. Physiol. 104A:23–27.

    Google Scholar 

  • De Vitry, F., Hamon, M., Catelon, J., Dubois, M., and Thibault, J. (1986). Serotonin initiates and autoamplifies its own synthesis during mouse central nervous system development.Proc. Natl. Acad. Sci. USA 83:8629–8633.

    PubMed  Google Scholar 

  • Durieux, M. (1993). OoClamp: An IBM-compatible software system for electrophysiologic receptor studies in Xenopus oocytes.Comput. Meth. Progr. Biomed. 41:101–105.

    Google Scholar 

  • Emanuelsson, H. (1974). Localization of serotonin in cleavage embryos of Ophryotrocha labronica La Greca and Bacci.Roux Arch. Entw.-mech. 175:253–271.

    Google Scholar 

  • Emanuelsson, H. (1992). Autoradiographic localization in polychaete embryos of tritiated mesulergine, a selective antagonist of serotonin receptors that inhibits early polychaete development.Int. J. Dev. Biol. 36:293–302.

    PubMed  Google Scholar 

  • Emauelsson, H., Carlberg, M., and Lowkvist, B. (1988). Presence of serotonin in early chick embryos.Cell. Diff. 24:191–200.

    Google Scholar 

  • Epstein, C. J. (1991). Aneuploidy and morphogenesis. In Epstein, C. J. (ed.),The Morphologenesis of Down Syndrome, Wiley-Liss, New York, pp. 1–18.

    Google Scholar 

  • Eusebi, F., Pasetto, N., and Siracusa, G. (1984). Acetylcholine receptors in human oocytes.J. Physiol. (Lond.) 346:321–330.

    Google Scholar 

  • Falugi, C. (1993). Localization and possible role of molecules associated with the cholinergic system during “non-nervous” developmental events.Eur. J. Histochem. 37:287–294.

    PubMed  Google Scholar 

  • Falugi, C., and Prestipino, G. (1989). Localization of putative nicotinic cholinoreceptors in the early development ofParacentrotus lividus.Cell. Mol. Biol. 35:147–161.

    PubMed  Google Scholar 

  • Fluck, R. A. (1982). Localization of acetylcholinestrase activity in young embryos of the medakaOryzias latipes, a teleost.Comp. Biochem. Physiol. 72C:59–64.

    Google Scholar 

  • Fujita, R., Tamazawa, Y., Barnard, E. A., and Matsumoto, M. (1993). Blocking effect of serotonin on beta-adrenoceptor activity in follicle-enclosedXenopus oocytes.Eur. J. Pharmacol. 240:213–217.

    PubMed  Google Scholar 

  • Gilbert, S. F. (1994).Developmental Biology, Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Godin, I., and Gipouloux, J. D. (1986). Notochordal catecholamines in exogastrulatedXenopus embryos.Dev. Growth Diff. 28:137–142.

    Google Scholar 

  • Goldberg, J. I., and Kater, S. B. (9189). Experssion and function of the neurotransmitter serotonin during development of theHelisoma nervous system.Dev. Biol. 131:483–495.

    Google Scholar 

  • Grausz, H., Richtsmeier, J. T., and Oster-Granite, M. L. (1991). Morphogenesis of the brain and craniofacial complex in trisomy 16 mice. In Epstein, C. J. (ed.),The Morphogenesis of Down Syndrome, Wiley-Liss, New York, pp. 169–188.

    Google Scholar 

  • Greenfield, L. J., Hackett, J. T., and Linden, J. (1990).Xenopus oocytes K+ current. II. Adenylyl-cyclase-linked receptors on follicle cells.Am. J. Physiol. 259:784–791.

    Google Scholar 

  • Guerrier, P., Leclerc-David, C., and Moreau, M. (1993). Evidence for the involvement of internal calcium stores during serotonin-induced meiosis reinitiation in oocytes of the bivalve mollusc Ruditapes philippinarum.Dev. Biol. 159:474–484.

    PubMed  Google Scholar 

  • Guram, M. S., Gill, T. S., and Geber, W. F. (1982). Comparative teratogenicity of chloridiazepoxide, amitriptyline, and a combination of the two compounds in the fetal hamster.Neurotoxicology 3:83–90.

    PubMed  Google Scholar 

  • Gustafson, T. (1989a). Pharmacological control of muscular activity of the sea urcin larva. I. Effects of nicotinic and muscarinic agents.Comp. Biochem. Physiol. 94C:1–14.

    Google Scholar 

  • Gustafson, T. (1989b). Pharmacological control of muscular activity of the sea urchin larva. II. Role of calcium in nicotinic stimulation and paralysis, and the modulatory role of muscarinic agents.Comp. Biochem. Physiol. 94C:15–21.

    Google Scholar 

  • Gustafson, T. (1991). Pharmacological control of muscular activity of the sea urchin larva. IV. Effects of monoamines and adenosine.Comp. Biochem. Physiol. 98C:307–315.

    Google Scholar 

  • Gustafson, T., and Toneby, M. (1970). On the role of serotonin and acetylcholine in sea urchin morphogenesis.Exp. Cell Res. 62:102–117.

    PubMed  Google Scholar 

  • Hellendall, R. P., Shambra, U., Liu, J., and Lauder, J. M. (1993). Prenatal expression of 5-HT1C and 5-HT2 receptors in the developing nervous system.Exp. Neurol. 120:186–201.

    PubMed  Google Scholar 

  • Idänpään-Heikkilä, J., and Saxen, L. (1973). Possible teratogenicity of imipramine/chloropyramine.Lancet 2:282–284.

    PubMed  Google Scholar 

  • Ivgy-May, N., Tamir, H., and Gershon, M. D. (1994). Synaptic properties of serotonergic growth cones in developing rat brain.J. Neurosci. 14:1011–1029.

    PubMed  Google Scholar 

  • Iwamatsu, T., Toya, Y., Sakai, N., Terada, Y., Nagata, R., and Nagahama, Y. (1993). Effect of 5-hydroxytryptamine on steroidogenesis and oocyte maturation in pre-ovulatory follicles in the medaka Oryzias latipes.Dev. Growth Diff. 36:625–630.

    Google Scholar 

  • Jaffe, L. (1990). First messengers at fertilization.J. Reprod. Fert. Suppl. 42:107–116.

    Google Scholar 

  • Ji, H., Sandberg, K., Bonner, T. I., and Catt, K. J. (1993). Differential activation of inositol 1,4,5-triphosphate-sensitive calcium pools by muscarinic receptors inXenopus laevis oocytes.Cell Calcium 14:649–662.

    PubMed  Google Scholar 

  • Juneja, R., Ito, E., and Koide, S. S. (1994). Effect of serotonin and tricyclic antidepressants on intracellular calcium concentrations inSpisula oocytes.Cell. Calcium 15:1–6.

    PubMed  Google Scholar 

  • Jurand, A. (1980). Malformations of the central nervous system induced by neurotropic drugs in mouse embryos.Dev. Growth Diff. 22:61–78.

    Google Scholar 

  • Kaltner, H., Andrae, S., and Wittmann, J. (1993). Activity of choline-esterases in the Japanese quail embryo.Biochem. Pharmacol. 45:87–92.

    PubMed  Google Scholar 

  • Kirby, M. L., and Gilmore, S. A. (1972). A fluorescence study on the ability of the notochord to synthesize and store catecholamines in early chick embryos.Anat. Rec. 173:469–478.

    PubMed  Google Scholar 

  • Kleppisch, T., Wobus, A. M., and Hescheler, J. (1993). Cation channels in oocytes and early stages of development: A novel type of nonselective cation channel activated by adrenaline in a clonal mesoderm-like cell line. (MES-1).EXS 66:297–303.

    PubMed  Google Scholar 

  • Koshtoyantz, Kh. S. (1963).Problems of Enzymo-Chemistry in Stimulatory and Inhibitory Processes and in the Evolution of the Functions of the Nervous System, Nauka, Moscow.

    Google Scholar 

  • Krantic, S., Guerrier, P., and Dube, F. (1993). Meiosis reinitiation in surf clam oocytes is mediated via a 5-hydroxytroptamine serotonin membrane receptor and a vitelline envelope-associated high affinity binding site.J. Biol. Chem. 268:7983–7989.

    PubMed  Google Scholar 

  • Kusano, K., Miledi, R., and Stinnakre, J. (1982). Cholinergic and catecholaminergic receptors in the oocyte membrane.J. Physiol. (Lond.) 328:143–170.

    Google Scholar 

  • Laasberg, T. (1990). Ca2+-mobilizing receptors of gastrulating chick embryo.Comp. Biochem. Physiol. 97C:9–12.

    Google Scholar 

  • LaBella, F. S., Queen, G., Durant, G., Stein, D., and Brandes, L. J. (1992). H3 receptor antagonist, thioperamide, inhibits adrenal steroidogenesis and histamine binding to adrenocortical microsomes and binds to cytochrome.Br. J. Pharmacol. 107:161–164.

    PubMed  Google Scholar 

  • Lauder, J. M. (1988). Neurotransmitters as morphogens.Prog. Brain Res. 73:365–387.

    PubMed  Google Scholar 

  • Lauder, J. M. (1990). Ontogeny of the serotonergic system in the rat: Serotonin as a developmental signal.Ann. N.Y. Acad. Sci. 600:297–314.

    PubMed  Google Scholar 

  • Lauder, J. M. (1993). Neurotransmitters as growth regulatory signals: Role of receptors and second messengers.Trends Neurosci. 16:233–240.

    PubMed  Google Scholar 

  • Lauder, J. M., and Liu, J. (1994). Glial heterogeneity and developing neurotransmititer systems.Perspect. Dev. Neurobiol. 2(3): 239–250.

    PubMed  Google Scholar 

  • Lauder, J. M., and Zimmerman, E. (1988). Sites of serotonin uptake in the epithelium of the developing mouse palate, oral cavity and face: Possible roles in morphogenesis?J. Craniofac. Genet. Dev. Biol. 8:265–276.

    PubMed  Google Scholar 

  • Lauder, J. M., Tamir, H., and Sadler, T. W. (1988). Serotonin and morphogenesis I. Sites of serotonin uptake and-binding protein immunoreactivity in the midgestation mouse embryo.Development 102:709–720.

    PubMed  Google Scholar 

  • Lauder, J. M., Moiseiwitsch, J., Liu, J., and Wilkie, M. B. (1994). Serotonin in development and pathophysiology. In Lou, H. C., Griesen, G., and Larsen, J. (eds.),Brain Lesions in the Newborn, Munksgaard, Copenhagen, pp. 60–72.

    Google Scholar 

  • Lawrence, I. E., Jr., and Burden, H. W. (1973). Catecholamines and morphogenesis of the chick neural tube and notochord.Am. J. Anat. 137:199–208.

    PubMed  Google Scholar 

  • Liu, J., and Lauder, J. M. (1992). S-100b and insulin-like growth factor-II differentially regulate growth of developing serotonin and dopamine neuronsin vitro.J. Neurosci. Res. 33:248–256.

    PubMed  Google Scholar 

  • Malinger, G., Zakut, H., and Soreq, H. (1989). Cholinoceptive properties of human primordial, preantral, and antral oocytes: In situ hybridization and biochemical evidence for expression of cholinestrase genes.J. Mol. Neurosci. 1:77–84.

    PubMed  Google Scholar 

  • Markova, L. N., Buznikov, G. A., Kovacevic, N., Rakic, L., Salimova, N. B., and Volina, E. V. (1985) Histochemical study of biogeneic monoamines in early (prenervous) and late embryos of sea urchins.Int. J. Dev. Neurosci. 3:492–500.

    Google Scholar 

  • Markova, L. N., Sadykova, K. A., and Sakharova, N. Yu. (1990). The effect of antagonists of biogeneic monoamines on the development of pre-implantational mouse embryosin vitro.Zh. Evol. Biokhim. Fiziol. 26:726–732.

    PubMed  Google Scholar 

  • Markwald, R. R., Mjaatvedt, E. L., Krug, E. L., and Sinning, A. R. (1990). Inductive interactions in heart development.Ann. N.Y. Acad. Sci. 588:13–25.

    PubMed  Google Scholar 

  • Martynova, L. E. (1981). Gastrulation inStrongylocentrotus droebachinensis sea urchin in the norm and during treatment with various substances.Sov. J. Dev. Biol. 12:310–315.

    Google Scholar 

  • Matus-Leibovitch, N., Gershengorn, M. C., and Oron, Y. (1993). Differential effects of cytoskeletal agents on hemispheric functional expression of cell membrane receptors inXenopus oocytes.Cell. Mol. Neurobiol. 13:625–627.

    PubMed  Google Scholar 

  • Miledi, R., and Woodward, R. M. (1989). Effects of defolliculation on membrane current responses ofXenopus oocytes.J. Physiol. (Lond.) 416:601–622.

    Google Scholar 

  • Moiseiwitsch, J. R. D., and Lauder, J. M. (1993).In vitro effects of serotonergic drugs on expression of S-100ß and tenascin.Teratology 47:393.

    Google Scholar 

  • Moiseiwitsch, J. R. D., and Lauder, J. M. (1995). Serotonin regulates cranial neural crest migration.Proc. Natl. Acad. Sci. (USA)92:7182–7186.

    Google Scholar 

  • Moiseiwitsch, J. R. D. and Lauder, J. M. (1996). Regulation of gene expression in cultural embryonic mesenclyme by serotonin antagonists.Anat. and Embryol. (submitted.)

  • Morilak, D. A., and Ciaranello, R. D. (1994). Ontogency of 5-hydroxytryptamine2 receptor immunoreactivity in the developing rat brain.Neuroscience 55:869–880.

    Google Scholar 

  • Newgreen, D. F., Allan, I. J., Young, H. M., and Southwell, B. R. (1981). Accumulation of exogenous catecholamines in the neural tube and non-neural tissues of the early fowl embryo: Correlation with morphogenetic movements.W. Roux Arch. 190:320–330.

    Google Scholar 

  • Nikitina, L. A., Malchenko, L. A., Teplitz, N. A., and Buznikov, G. A. (1988). Effect of serotonin and its analogs on amphibian oocytes maturingin vitro.Sov. J. Dev. Biol. 19:336–343.

    Google Scholar 

  • Nikitina, L. A., Trubnikova, O. B., and Buznikov, G. A. (1993). Effects of neurotransmitters and their antagonists on oocyte maturation. The effect of serotonin antagonists onin vitro oocyte maturation in amphibians.Russ. J. Dev. Biol. 24:229–236.

    Google Scholar 

  • Oron, Y., Gillo, B., Straub, R. E., and Gershengorn, M. C. (1988). Differences in receptor-evoked membrane electrical responses in native and mRNA-injectedXenopus oocytes.Proc. Natl. Acad. Sci. USA 85:3820–3824.

    PubMed  Google Scholar 

  • Palen, K., Thorneby, L., and Emanuelsson, H. (1979). Effects of serotonin and serotonin antagonists on chick embryogenesis.W. Roux Arch. 187:89–103.

    Google Scholar 

  • Paulet, Y.-M., Donval, A., and Bekhadra, F. (1993). Monoamines and reproduction inPecten maximus, a preliminary approach. Invertebr.Reprod. Dev. 23:89–94.

    Google Scholar 

  • Pflugfelder, O. (1962).Lehrbuch der Entwicklungsgeschichte und Entwicklungsphysiologie der Tiere, VEB Gustav Fischer Verlag, Jena.

    Google Scholar 

  • Pienkowski, M. M. (1977). Involvement of biogeneic amines in control of development of early mouse embryos.Anat. Rec. 189:550.

    Google Scholar 

  • Ram, J. L., Croll, R. P., Nichols, S. J., and Wall, D. (1992). The zebra mussel (Deissena polymorpha), a new pest in North America: Reproductive mechanisms as possible targets of control strategies.Invertebr. Reprod. Dev. 22:77–86.

    Google Scholar 

  • Renaud, F., Parisi, E., Capasso, A., and De Prisco, E. P. (1983). On the role of serotonin and 5-methoxytryptamine in the regulation of cell division in sea urchin eggs.Dev. Biol.,98:37–47.

    PubMed  Google Scholar 

  • Rostomyan, M. A., Abramian, K. S., Buznikov, G. A., and Gusareva, E. V. (1985). Electronmicro scopy cytochemical detection of adenylate cyclase in early sea urchin embryos.Tsitologiya 27:877–881 (in Russian).

    Google Scholar 

  • Rowe, S. J., Messenger, N. J., and Warner, A. E. (1993). The role of noradrenaline in the differentiation of amphibian embryonic neurons.Development 19:1343–1357.

    Google Scholar 

  • Ruiz i Altaba, A. (1994). Pattern formation in the vertebrate neural plate.Trends Neurosci. 17:233–243.

    PubMed  Google Scholar 

  • Sadykova, K. A., Sakharova, N. Iu., and Markova, L. N. (1992). The effect of cyclic nucleotides on the sensitivity of early mouse embryos to biogenic monoamine antagonists.Ontogenes 23:379–384.

    Google Scholar 

  • Sakuta, H. (1994). Inhibition by histamine H1 receptor antagonists of endogenous glibenclamide-sensitive K+ channels in follicle-enclosedXenopus oocytes.Eur. J. Pharmacol. 266:99–102.

    PubMed  Google Scholar 

  • Shilling, F. M., Carroll, D. J., Muslin, A., Escobedo, J. A., Williams, L. T., and Jaffe, L. A. (1994). Evidence for both tyrosine kinase and G-protein-coupled pathways leading to starfish egg activation.Dev. Biol. 162:590–599.

    PubMed  Google Scholar 

  • Shmukler, Yu. B. (1981). Cellular interactions in early sea urchin embryos III. The effect of neuropharmacological compounds on division type of Scapechinus mirabilis half embryos.Sov. J. Dev. Biol. 12:263–267.

    Google Scholar 

  • Shmukler, Yu. B. (1993). Possiblity of membrane reception of neurotransmitter in sea urchin early embryos.Comp. Biochem. Physiol. 106C:269–273.

    Google Scholar 

  • Shmukler, Yu. B., and Grigoriev, N. G. (1984). Cellular interactions in early embryos of sea urchins. V. New data about the mechanisms of regulation of micromete formation.Sov. J. Dev. Biol. 15:308–310.

    Google Scholar 

  • Shmukler, Yu. B., Chailakhyan, L. M., Smolyaninov, V. V., Bliokh, Zh. L., Karpovich, A. L., Gusareva, E. V., Naidenko, T. H., Hashaev, Z. H.-M., and Medvedeva, T. D. (1981). Cellular interactions in early embryos of sea urchins. II. Dated mechanical isolation of blastomeres.Sov. J. Dev. Biol. 12:398–403.

    Google Scholar 

  • Shmukler, Yu. B., Grigoriev, N. G., Buznikov, G. A., and Turpaev, T. M. (1986). Regulation of cleavage divisions: Participation of prenervous neurotransmitters coupled with second messengers.Comp. Biochem. Physiol. 83C:423–427.

    Google Scholar 

  • Shmukler, Yu. B., Grigoriev, N. G., and Martynova, L. E. (1987). Changes of cell surface ofXenopus laevis blatomeres after cAMP and calcium ions microinjection.Dokl. Akad. Nauk SSSR 294:507–510.

    Google Scholar 

  • Shmukler, Yu. B., Grigoriev, N. G., and Moskovkin, G. N. (1988). Adrenoreceptive structures of early embryos of clawed frog (Xenopus laevis).J. Evol. Biochem. Physiol. 24:621–624.

    Google Scholar 

  • Shuey, D. L. (1991).Serotonergic Mechanisms in Normal and Abnormal Craniofacial Morphogenesis, Ph.D. thesis, University of North Carolina at Chapel Hill, Chapel Hill.

    Google Scholar 

  • Shuey, D. L., Sadler, T. W., and Lauder, J. M. (1992). Serotonin as a regulator of craniofacial morphogenesis; Site specific malformations following exposure to serotonin uptake inhibitors.Teratology 46:367–378.

    PubMed  Google Scholar 

  • Shuey, D. L., Sadler, T. W., Tamir, H., and Lauder, J. M. (1993). Serotonin and morphogenesis II. Transient expression of serotonin uptake and binding protein during craniofacial morphogenesis in the mouse.Anat. Embryol. 187:75–85.

    PubMed  Google Scholar 

  • Steinhardt, R. A., Bi, G. Q., and Alderton, J. M. (1994). Cell membrane resealing by vesicular mechanism similar to neurotransmitter release.Science 263:390–393.

    PubMed  Google Scholar 

  • Stephens, R. E., and Prior, G. (1992). Dynein from serotonin-activated cilia and flagella: Extraction characteristics and distinct sites for cAmP-dependent protein phosphorylaitonJ. Cell. Sci. 103:999–1012.

    PubMed  Google Scholar 

  • Strudel, G., Recasens, M., and Mandel, P. (1977). Identification de catecholamines et de serotonine dans les chordes d'embryons de poulet.C.R. Acad. Sci. Paris 284:967–969.

    Google Scholar 

  • Tamir, H., and Gershon, M. D. (1990). Serotonin-storing secretory veiscles.Ann. N.Y. Acad. Sci. 600:53–67.

    PubMed  Google Scholar 

  • Togo, T., Deguchi, R., and Osanai, K. (1993). Meiotic maturation and early development in the marine bivalveHiatella flaccia.Bull. Marine Biol. Stat. Asamushi 19:41–47.

    Google Scholar 

  • Toth, M., Benjamin, D., and Shenk, T. (1994). Targeted disruption of the 5-HT2 receptor results in developmental abnormalities in mice.Abstracts, IUPHAR Third Satellite Meeting on Serotonin, p. 37.

  • Ueda, S., Gu, X. F., Whitaker-Azmitia, P. M., Naruse, I., and Azmitia, E. C. (1994). Neuro-glial neurotrophic interaction in the S-100ß retarded mutant mouse (Polydactyly Nagoya). I. Immuno-cytochemical and neurochemical stuides.Brain. Res. 633:277–283.

    Google Scholar 

  • Vaillancourt, C., Petit, A., and Belisle, S. (1994a). D2-Dopamine agonists inhibit adenosine 3′∶5′-cyclic monophosphate (cAMP) production in human term trophoblastic cells.Life Sci. 55:1545–1552.

    PubMed  Google Scholar 

  • Vaillancourt, C., Petit, A., Gallo Payet, N., Bellabarba, D., Lehoux, J. G., and Belisle, S. (1994b). Labeling of D2-dopaminergic and 5-HT2-serotonergic binding sites in human trophoblastic cells using [3H]spiperone.J. Recept. Res. 14:11–22.

    PubMed  Google Scholar 

  • Van Cauteren, H., Vandenberghe, J., and Marsboom, R., (1986). Protective activity of ketanserin against serotonin-induced embryotoxicity and teratogeniticity.Drug Dev. Res. 8:179–185.

    Google Scholar 

  • Vorhees, C. V., Acuff-Smith, K. D., Schilling, M. A., Fisher, J. E., Moran, M. S., and Buelke-Sam, J. (1994). A developmental neurotoxicity evaluation of the effects of prenatal exposure to fluoxetine in rats.Fund. Appl. Toxicol. 23:194–205.

    Google Scholar 

  • Wallace, J. A. (1982). Monoamines in the early chick embryo: Demonstration of serotonin synthesis and the regional distribution of serotonin-concentrating cells during morphogenesis.Am. J. Anat. 165:261–276.

    PubMed  Google Scholar 

  • Webb, S., Anderson, R. A., and Brown, N. A. (1994). Mouse trisomy 16 model of heart defects in Down syndrome; Atrioventricular cushion cells and volumes.Teratology 49:373.

    Google Scholar 

  • Whitaker-Azmitia, P. M. (1991). IV. Role of serotonin and other neurotransmitter receptors in brain development: Basis for developmental pharmacology.Pharmacol. Rev. 43:553–561.

    PubMed  Google Scholar 

  • Whitaker-Azmitia, P. M., and Azmitia, E. C. (1994). Astroglial 5-HT1A receptors and S-100ß in development and plasticity.Perspect. Dev. Neurobiol. 2(3):233–238.

    PubMed  Google Scholar 

  • Whitaker-Azmitia, P., Lauder J., Shemmer, A., and Azmitia, E. (1987). Postnatal changes in serotonin receptors following prenatal alteration in serotonin levels: Further evidence for functional fetal serotonin receptors.Dev. Brain Res. 33:285–289.

    Google Scholar 

  • Whitaker-Azmitia, P. M., Shemer A. V., Caruso, J., Molino, L., and Azmitia, E. C. (1990). Role of high affinity serotonin receptors in neuronal growth.Ann. N.Y. Acad. Sci. 600:315–330.

    PubMed  Google Scholar 

  • Yavarone, M. S. (1991)Prospective Roles for Serotonin in Heart Development, Ph.D. thesis, University of North Carolina at Chapel Hill, Chapel Hill.

    Google Scholar 

  • Yavarone, M. S., Shuey, D. L., Tamir, H., Sadler, T. W., and Lauder, J. M. (1993a). Serotonin and cardiac morphogenesis in the mouse embryo.Teratology 47:573–584.

    PubMed  Google Scholar 

  • Yavarone, M. S., Shuey, D. L., Sadler, T. W., and Lauder, J. M. (1993b). Serotonin uptake in the ectoplacental cone and placenta of the mouse.Placenta 14:149–161.

    PubMed  Google Scholar 

  • Yoneda, M., and Schroeder, T. E. (1984). Cell cycle timing in colchincine-treated sea urchin eggs: Persistent coordination between the nuclear cycles and the rhythm of cortical stiffness.J. Exp. Zool. 231:367–378.

    Google Scholar 

  • Yoshida, S., and Plant, S. A. (1991). A potassium current evoked by growth hormone-releasing hormone in follicular oocytes ofXenopus laevis.J. Physiol. (Lond.) 443:651–667.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buznikov, G.A., Shmukler, Y.B. & Lauder, J.M. From oocyte to neuron: Do neurotransmitters function in the same way throughout development?. Cell Mol Neurobiol 16, 533–559 (1996). https://doi.org/10.1007/BF02152056

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02152056

Key Words

Navigation