Skip to main content
Log in

Maturation of renal potassium transport

  • Literature Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Summary

The studies outlined in this review suggest that the immaturity of distal nephron segments may hinder urinary excretion of potassium early in life. Among the factors that may limit potassium secretion by principal cells in the neonatal cortical collecting duct are an unfavorable electrochemical gradient (reduced Ki, Na+−K+-ATPase activity and/or Vte), limited membrane permeability to potassium and sodium, low tubular fluid flow rate, reduced luminal sodium concentration, or increased paracellular backleak. Alternatively, enhanced potassium absorption by other relatively well-differentiated distal nephron segments may contribute in part to a reduced net potassium excretory rate in the newborn.

It should be kept in mind, however, that the limited potassium secretory capacity of the immature kidney becomes clinically relevant only under conditions of potassium excess. Under normal circumstances, the tendency of the newborn to retain potassium is an appropriate and necessary condition for growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sulyok E, Nemeth M, Tenyi I, Csaba IF, Varga F, Gyory E, Thurzo V (1979) Relationship between maturity, electrolyte balance and the function of the renin-angiotensin-aldosterone system in newborn infants. Biol Neonate 35: 60–65

    PubMed  Google Scholar 

  2. Wilde W (1962) Potassium. In: Comar CL, Bronner F (eds) Mineral metabolism., vol IIB. Academic Press, New York, pp. 73–107

    Google Scholar 

  3. Satlin LM, Schwartz GJ (1990) Metabolism of potassium. In: Ichikawa I (ed) Pediatric textbook of fluids and electrolytes, Williams and Wilkins, Baltimore, pp 89–98

    Google Scholar 

  4. Rodriguez-Soriano J, Vallo A, Castillo G, Oliveros R (1981) Renal handling of water and sodium in infancy and childhood: a study using clearance methods during hypotonic saline diuresis. Kidney Int 20: 700–704

    PubMed  Google Scholar 

  5. Lelievre-Pegorier M, Merlet-Benichou C, Roinel N, Rouffignac C de (1983) Developmental pattern of water and electrolyte transport in rat superficial nephrons. Am J Physiol 245: F15-F21

    PubMed  Google Scholar 

  6. Widdowson EM, McCance RA (1956) The effect of development on the composition of the serum and extracellular fluid. Clin Sci 15: 361–371

    PubMed  Google Scholar 

  7. Tuvdad F, McNamara H, Barnett HL (1964) Renal response of premature infants to administration of bicarbonate and potassium. Pediatrics 13: 4–16

    Google Scholar 

  8. Lorenz JM, Kleinman LI, Disney TA (1986) Renal response of newborn dog to potassium loading Am J Physiol 251: F513-F519

    PubMed  Google Scholar 

  9. McCance RA, Widdowson EM (1958) The response of the newborn piglet to an excess of potassium. J Physiol 141: 88–96

    PubMed  Google Scholar 

  10. Kerstein L, Mohr C, Braunich H (1971) Der Mechanismus der renalen ausscheidung von Natrion und Kalium und seine Altersabhängige Entwicklung bei, Ratten vom 5. bis 240. Lebenstag. Acta Biol Med Ger 27: 327–340

    PubMed  Google Scholar 

  11. Malnic G, Klose RM, Giebisch G (1964) Micropuncture study of renal potassiym excretion in the rat. Am J Physiol 206: 674–686

    PubMed  Google Scholar 

  12. Solomon S (1974) Maximal gradients of Na and K across proximal tubules of kidneys of immature rats. Biol Neonate 25: 327–339

    PubMed  Google Scholar 

  13. Jamison RL, Work J, Schafer JA (1982) New pathways for potassium transport in the kidney. Am J Physiol 242: F297-F312

    PubMed  Google Scholar 

  14. Malnic G, Klose RM, Giebisch G (1966) Micropuncture study of distal tubular potassium and sodium transport in rat nephron. Am J Physiol 211: 529–547

    PubMed  Google Scholar 

  15. Zink H, Horster M (1977) Maturation of diluting capacity in loop of Henle of rat superficial nephrons. Am J Physiol 233: F519-F524

    PubMed  Google Scholar 

  16. Kleinman LI, Banks RO (1983) Segmental nephron sodium and potassium reabsorption in newborn and adult dogs during saline expansion. Proc Soc Exp Biol Med 173: 231–237

    PubMed  Google Scholar 

  17. Battilana CA, Dobyan DC, Lacy FB, Bhattacharya J, Johnston PA, Jamison RL (1978) Effect of chronic potassium loading on potassium secretion by the pars recta or descending limb of juxtamedullary nephron in the rat. J Clin Invest 62: 1093–1103

    PubMed  Google Scholar 

  18. Jamison RL, Lacy FB, Pennell JP, Sanjana VM (1976) Potassium secretion by the descending limb or pars recta of the juxtamedullary nephron in vivo. Kidney Int 9: 323–332

    PubMed  Google Scholar 

  19. Bulger RE, Beeuwkes R III, Saubermann AJ (1981) Application of scanning electron microscopy to X-ray analysis of frozen-hydrated sections. III. Elemental content of cells in the rat renal papillary tip. J Cell Biol 88: 274–280

    PubMed  Google Scholar 

  20. Work J, Troutman SL, Schafer JA (1982) Transport of potassium in the rabbit pars recta. Am J Physiol 242: F226-F237

    PubMed  Google Scholar 

  21. Grantham JJ, Burg MB, Orloff J (1970) The nature of transtubular Na and K transport in isolated rabbit renal collecting tubules. J Clin Invest 49: 1815–1826

    PubMed  Google Scholar 

  22. Stokes JB (1982) Ion transport by the cortical and outer medullary collecting tubule. Kidney Int 22: 473–484

    PubMed  Google Scholar 

  23. Stokes JB (1982) Na and K transport across the cortical and outer medullary collecting tubule of the rabbit: evidence for diffusion across the outer medullary portion. Am J Physiol 242: F514-F520

    PubMed  Google Scholar 

  24. Imai M, Nakamura R (1982) Function of distal convoluted and connecting tubules studied by isolated nephron segments. Kidney Int 22: 465–472

    PubMed  Google Scholar 

  25. Madsen KM, Tisher CC (1986) Structural-functional relationships along the distal nephron. Am J Physiol 250: F1-F15

    Google Scholar 

  26. Stanton BA (1989) Renal potassium transport: morphological and functional adaptations. Am J Physiol 257: R989-R997

    PubMed  Google Scholar 

  27. Koeppen BM, Biagi BA, Giebisch GH (1983) Intracellular microelectrode recording characterization of the rabbit cortical collecting duct. Am J Physiol 244: F35-F47

    PubMed  Google Scholar 

  28. Sansom SC, O'Neil RG (1985) Mineralocorticoid, regulation of apical cell membrane Na+ and K+ transport of the cortical collecting duct. Am J Physiol 248: F858-F868

    PubMed  Google Scholar 

  29. Stetson DL, Steinmetz PR (1985) a- and b-types of carbonic anhydrase-rich cells in turtle bladder. Am J Physiol 249: F553-F565

    PubMed  Google Scholar 

  30. Schwartz GJ, Barasch J, Al-Awqati Q (1985), Plasticity of functional epithelial polarity. Nature 318: 368–371

    PubMed  Google Scholar 

  31. Schuster VL, Bonsib SM, Jennings ML (1986) Two types of collecting duct mitochondria-rich (intercalated) cells: lectin and band 3 cytochemistry. Am J Physiol 251: F347-F355

    Google Scholar 

  32. Katz AI (1982) Renal Na−K-ATPase: its role in tubular sodium and potassium transport. Am J Physiol 242: F207-F219

    PubMed  Google Scholar 

  33. O'Neil RG, Sansom SC (1984) Characterization of apical cell membrane Na and K conductances of cortical collecting tubule using microelectrode techniques. Am J Physiol 247: F14-F24

    PubMed  Google Scholar 

  34. Stokes JB (1984) Pathways of K+ permeation across the rabbit cortical collecting tubule: effect of amiloride. Am J Physiol 246: F457-F466

    PubMed  Google Scholar 

  35. Wingo CS (1989) Reversible chloride-dependent potassium flux across the rabbit cortical collecting tubule. Am J Physiol 256: F697-F704

    PubMed  Google Scholar 

  36. Weiner ID, Hamm LL (1990) Regulation of intracellular pH in the rabbit cortical collecting tubule. J Clin Invest 85: 274–281

    PubMed  Google Scholar 

  37. Chaillet JR, Lopes AG, Boron WF (1985) Basolateral Na−H exchange in the rabbit cortical collecting tubule. J Gen Physiol 86: 795–812

    PubMed  Google Scholar 

  38. Wingo CS (1987) Potassium transport by the medullary collecting tubule of rabbit: effects of variation in K intake. Am J Physiol 253: F1136-F1141

    PubMed  Google Scholar 

  39. Evan A, Huser J, Bengele HH, Alexander EA (1980) The effect of alterations in dietary potassium on collecting system morphology in the rat. Lab Invest 42: 668–675

    PubMed  Google Scholar 

  40. Stetson DL, Wade JB, Giebisch G (1980) Morphologic alterations in the rat medullary collecting duct following K depletion. Kidney Int 17: 45–56

    PubMed  Google Scholar 

  41. Wingo CS (1989) Active proton secretion and potassium absorption in the rabbit outer medullary collecting duct: functional evidence for H-K activated adenosine triphosphatase. J Clin Invest 84: 361–365

    PubMed  Google Scholar 

  42. Brown NL, Maosen KM, Wingo CS, Smolka A, Tisher CC (1990) Translocation of H-K-ATPase to the apical membrane in intercalated cells (IC) of rat during potassium depletion. Kidney Int 37: 560A

    Google Scholar 

  43. Oliver J, MacDowell M, Welt LG, Holliday MA, Hollander W Jr, Winters RW, Williams TF, Segar WE (1957) The renal lesions of electrolyte imbalance. J Exp Med 106: 563–574

    PubMed  Google Scholar 

  44. Hansen GP, Tisher CC, Robinson RR (1980) Response of the collecting duct to disturbances of acid-base and potassium balance. Kidney Int 17: 326–337

    PubMed  Google Scholar 

  45. Shareghi GR, Stoner LC (1978) Calcium transport across segments of rabbit nephron in vitro. Am J Physiol 235: F367-F375

    PubMed  Google Scholar 

  46. Kaissling K, Kriz W (1979) Structural analysis of the rabbit kidney. Adv Anat Embryol Cell Biol 56: 1–122

    PubMed  Google Scholar 

  47. Garg LC, Naraang N (1988) Ouabain-insensitive K-adenosine triphosphatase in distal nephron segments of the rabbit. J Clin Invest 81: 1204–1208

    PubMed  Google Scholar 

  48. Doucet A, Marsy S (1987) Characterization of K-ATPase activity in distal nephron: stimulation by potassium depletion. Am J Physiol 253: F418-F423

    PubMed  Google Scholar 

  49. Saxen L (1987) Organogenesis of the kidney. Cambridge University Press. Cambridge, pp 13–34

    Google Scholar 

  50. Osathandonh V, Potter EL (1963) Development of human kidney by microdissection. III. Formation and interrelationships of collecting tubules and nephrons. Arch Pathol Lab Med 756: 290–302

    Google Scholar 

  51. Satlin LM, Schwartz GJ (1987) Postnatal maturation of rabbit renal collecting duct: intercalated cell function. Am J Physiol 253: F622-F635

    PubMed  Google Scholar 

  52. Satlin LM, Evan AP, Gattone VH III, Schwartz GJ (1988) Postnatal maturation of the rabbit cortical collecting duct. Pediatr Nephrol 2: 135–145

    PubMed  Google Scholar 

  53. Mehrgut FM, Satlin LM, Schwartz GJ (1990) Maturation of HCO3 transport in the rabbit collecting duct. Am J Physiol 259: F801-F808

    PubMed  Google Scholar 

  54. Schwartz GJ, Evan AP (1983) Development of solute transport in rabbit proximal tubule. I. HCO3 and glucose absorption. Am J Physiol 245: F382-F390

    PubMed  Google Scholar 

  55. Natke E Jr, Stoner LC (1982) Na+ transport properties of the peritubular membrane of cortical collecting tubule. Am J Physiol 242: F664-F671

    PubMed  Google Scholar 

  56. Rajerison RM, Faure M, Morel F (1986) Effects of temperature, ouabain and diuretics on the cell sodium and potassium contents of isolated rat kidney tubules. Pflugers Arch 406: 285–290

    PubMed  Google Scholar 

  57. Sudo J, Morel F (1984) Na+ and K+ cell concentrations in collagenase-treated rat kidney tubules incubated at various temperatures. Am J Physiol 246: C407-C414

    PubMed  Google Scholar 

  58. Sauer M, Dorge A, Thurau K, Beck F (1989) Effect of ouabain on electrolyte concentrations in principal and intercalated cells of the isolated perfused cortical collecting duct. Pflugers Arch 413: 651–655

    PubMed  Google Scholar 

  59. Sansom SC, Agulian S, Muto S, Illig V, Giebisch G (1989) K activity of CCD principal cells from normal and DOCA-treated rabbits. Am J Physiol 256: F136-F142

    PubMed  Google Scholar 

  60. Civan MM (1978) Intracellular activities of sodium and potassium. Am J Physiol 234: F261-F269

    PubMed  Google Scholar 

  61. Slack C, Warner AE, Warren RL (1973) The distribution of sodium and potassium in amphibian embryos during early development. J Physiol 232: 297–312

    PubMed  Google Scholar 

  62. Horowitz SB, Paine PL (1979) Reference phase analysis of free and bound intracellular solutes. Biophys J 25: 45–62

    PubMed  Google Scholar 

  63. Schmidt U, Horster M (1977) Na−K activated ATPase: activity maturation in rabbit nephron segments dissected in vitro. Am J Physiol 233: F55-F60

    PubMed  Google Scholar 

  64. Minuth WW, Gross P, Gilbert P, Kashgarian M (1987) Expression of the alpha subunit of Na-K-ATPase in renal collecting duct epithelium during development. Kidney Int 31: 1104–1112

    PubMed  Google Scholar 

  65. Khuri RN, Agulian SK, Kalloghlian A (1972) Intracellular potassium in cells of the distal tubule. Pflugers Arch 335: 297–308

    PubMed  Google Scholar 

  66. deMello-Aires M, Malnic G (1972) Renal handling of sodium and potassium during hypochloremic alkalosis in the rat. Pflugers Arch 331: 215–225

    PubMed  Google Scholar 

  67. Garcia-Filho E, Malnic G, Giebisch G (1980) Effects of changes in electrical potential difference on tubular potassium transport. Am J Physiol 238: F235-F246

    PubMed  Google Scholar 

  68. Stokes JB (1981) Potassium secretion by cortical collecting tubule: relation to sodium absorption, luminal sodium concentration, and transepithelial voltage. Am J Physiol 241: F395-F402

    PubMed  Google Scholar 

  69. Velazquez H, Wright FS, Good DW (1982) Luminal influences on potassium secretion: chloride replacement with sulfate. Am J Physiol 242: F46-F55

    PubMed  Google Scholar 

  70. Larsson SH, Aperia A, Lechene C (1986) Studies on final differentiation of rat renal proximal tubular cells in culture. Am J Physiol 251: C455-C464

    PubMed  Google Scholar 

  71. Boudry JF, Stoner LC, Burg MB (1976) Effect of acid lumen pH on potassium transport in renal cortical collecting tubules. Am J Physiol 230: 239–244

    PubMed  Google Scholar 

  72. Good DW, Wright FS (1979) Luminal influences of potassium secretion: sodium concentration and fluid flow rate. Am J Physiol 236: F192-F205

    PubMed  Google Scholar 

  73. Malnic G, Berliner RW, Giebisch G (1989) Flow dependence of K secretion in cortical distal tubules of the rat. Am J Physiol 256: F932-F941

    PubMed  Google Scholar 

  74. Khuri RN, Wiederholt M, Strieder N, Giebisch G (1975) The effects of flow rate and potassium intake on distal tubular potassium transfer. Am J Physiol 228: 1249–1261

    PubMed  Google Scholar 

  75. Spitzer A, Brandis M (1974) Functional and morphologic maturation of the superficial nephrons. Relationship to total kidney function. J Clin Invest 53: 279–287

    PubMed  Google Scholar 

  76. Aperia A, Elinder G (1981) Distal tubular sodium reabsorption in the developing rat kidney. Am J Physiol 240: F487-F491

    PubMed  Google Scholar 

  77. Good DW, Velasquez H, Wright FS (1984) Luminal influences on potassium secretion: low sodium concentration. Am J Physiol 246: F609-F619

    PubMed  Google Scholar 

  78. Horster M, Larsson L (1976) Mechanisms of fluid absorption during proximal tubule development. Kidney Int 10: 348–363

    PubMed  Google Scholar 

  79. Horster M (1982) Expression of ontogeny in individual nephron segments. Kidney Int 22: 550–559

    PubMed  Google Scholar 

  80. Field MJ, Giebisch G (1985) Hormonal control of renal potassium excretion. Kidney Int 27: 379–387

    PubMed  Google Scholar 

  81. Schwartz GJ, Burg MB (1978) Mineralocorticoid effects on cation transport by cortical collecting tubules in vitro. Am J Physiol 235: F576-F585

    PubMed  Google Scholar 

  82. Wingo CS, Kokko JP, Jacobson HR (1985) Effects of in vitro aldosterone on the rabbit cortical collecting tubule. Kidney Int 28: 51–57

    PubMed  Google Scholar 

  83. Field MJ, Stanton BA, Giebisch GH (1984) Differential acute effects of aldosterone, dexamethasone, and hyperkalemia on distal tubular K secretion in the rat kidney. J Clin Invest 74: 1792–1802

    PubMed  Google Scholar 

  84. Stanton BA (1986) Regulation by adrenal corticosteroids of sodium and potassium transport in loop of Henle and distal tubule of rat kidney. J Clin Invest 78: 1612–1620

    PubMed  Google Scholar 

  85. Stokes JB (1985) Mineralocorticoid effect on K+ permeability of the rabbit cortical collecting tubule. Kidney Int 28: 640–645

    PubMed  Google Scholar 

  86. Wade JB, O'Neil RG, Prior JL, Boulpaep EL (1979) Modulation of cell membrane in renal cortical collecting tubules by corticosteroid hormones. J Cell Biol 81: 439–445

    PubMed  Google Scholar 

  87. Kaissling B (1982) Structural aspects of adaptive changes in renal electrolyte excretion. Am J Physiol 243: F211-F226

    PubMed  Google Scholar 

  88. Garg LC, Knepper MA, Burg MB (1981) Mineralocorticoid effects on Na-K-ATPase in individual nephron segments. Am J Physiol 240: F536-F544

    PubMed  Google Scholar 

  89. Mujais SK, Chekal MA, Jones WJ, Hayslett JP, Katz AI (1985) Modulation of renal Na-K-ATPase by aldosterone. J Clin Inest 76: 170–176

    Google Scholar 

  90. Petty KJ, Kokko JP, Marver D (1981) Secondary effect of aldosterone on Na-K-ATPase activity in the rabbit cortical collecting tubule. J Clin Invest 68: 1514–1521

    PubMed  Google Scholar 

  91. Wiederholt M, Schoormans W, Fischer F, Behn C (1973) Mechanism of action of aldosterone on potassium transfer in the rat kidney. Pflugers Arch 345: 159–178

    PubMed  Google Scholar 

  92. Wiederholt M, Agulian SK, Khuri RN (1974) Intracellular potassium in the distal tubule of the adrenalectomized and aldosterone treated rat. Pflugers Arch 347: 117–123

    PubMed  Google Scholar 

  93. Drukker A, Goldsmith DI, Spitzer A, Edelman CM, Blaufox MD (1980) The renin-angiotensin system in newborn dogs: developmental patterns and response to acute saline loading. Pediatr Res 14: 304–307

    PubMed  Google Scholar 

  94. Siegel SR, Fischer DA (1980) Ontogeny of the renin-angiotensin-aldosterone system in fetal and newborn lambs. Pediatr Res 14: 99–102

    PubMed  Google Scholar 

  95. Kowarski A, Katz H, Migeon CJ (1974) Plasma aldosterone concentration in normal subjects from infancy to adulthood. J Clin Endocrinol Metab 38: 489–491

    PubMed  Google Scholar 

  96. Marver D, Kokko JP (1983) Rehal target sites and the mechanism of action of aldosrone. Miner Electrolyte Metab 9: 1–18

    PubMed  Google Scholar 

  97. Stephenson G, Hammet M, Hadaway G, Funder JW (1984) Ontogeny of renal mineralocorticoid receptors and urinary electrolyte responses in the rat. Am J Physiol 247: F665-F671

    PubMed  Google Scholar 

  98. Rayson BM, Edelman IS (1982) Glucocorticoid stimulation of Na-K-ATPase in superfused distal segments of kidney tubules in vitro. Am J Physiol 243: F463-F470

    PubMed  Google Scholar 

  99. Dobrovic-Jenik D, Milkovic S (1988) Regulation of fetal Na+/K+-ATPase in rat kidney by corticosteroids. Biochim Biophys Acta 942: 227–235

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satlin, L.M. Maturation of renal potassium transport. Pediatr Nephrol 5, 260–269 (1991). https://doi.org/10.1007/BF01095968

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01095968

Keywords

Navigation