Skip to main content
Log in

Adaptation of a reaching model to handwriting: How different effectors can produce the same written output, and other results

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

This report shows how a model initially developed for the control of reaching can be adapted for the control of handwriting. The main problem addressed by the model is how people can produce essentially the same written output with different effectors (e.g., the preferred or nonpreferred hand, the foot, or even the mouth). The model is based on the assumption that writers strive for invariant graphic outputs when they write with different effectors, when they write on surfaces with different orientations, or when they write large or small script; such output invariance is an essential requirement for later recognition of the written result. Given this assumption, the question is how the motor system enables the relevant effectors to generate the necessary pen strokes. The adapted model provides one possible answer to this question. It is the first fully working model of multijoint activity underlying writing and related graphic tasks. We describe how the model differs from other models developed in the past, and we review the model's strengths and weaknesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baxter, D. M., & Warrington, E. K. (1986). Ideational agraphia: A single case study. Journal of Neurology, Neurosurgery, and Psychiatry, 22, 369–375.

    Google Scholar 

  • Berkenblit, M. B., & Feldman, A. G. (1988). Some problems of motor control. Journal of Motor Behavior, 20, 369–373.

    Google Scholar 

  • Bernstein, N. (1967). The coordination and regulation of movements. London: Pergamon.

    Google Scholar 

  • Bizzi, E., Hogan, N., Mussa-Ivaldi, F. A., & Giszter, S. (1992). Does the nervous system use equilibrium-point control to guide single and multiple joint movements? Behavioral and Brain Sciences, 15, 603–613.

    Google Scholar 

  • Bullock, D., Grossberg, D., & Mannes, C. (1993). A neural network model for cursive script production. Biological Cybernetics, 70, 15–28.

    Google Scholar 

  • Castiello, U., & Stelmach, G. E. (1993). Generalized representation of handwriting: Evidence of effector independence. Acta Psychologica, 82, 53–68.

    Google Scholar 

  • Calis, G., Teulings, H. L., & Keuss, P. J. G. (1983). In search of writing and reading habits in the microgenetic phase of letter recognition. Acta Psychologica, 54, 313–326.

    Google Scholar 

  • Cruse, H., Brüwer, M., & Dean, J. (1993). Control of three- and four-joint arm movement: Strategies for a manipulator with redundant degrees of freedom. Journal of Motor Behavior, 25, 131–139.

    Google Scholar 

  • Denier van der Gon, J. J., & Thuring, J. Ph. (1965). The guiding of human writing movements. Kybernetik, 2, 145–148.

    Google Scholar 

  • Edelman, S., & Flash, T. (1987). A model of handwriting. Biological Cybernetics, 57, 25–36.

    Google Scholar 

  • Ellis, A.W. (1982). Spelling and writing (and reading and speaking). In A. W. Ellis (Ed.), Normality and pathology in cognitive functions (pp. 113–146). London: Academic Press.

    Google Scholar 

  • Flash, T., & Hems, E. (1991). Arm trajectory modifications during reaching towards visual targets. Journal of Cognitive Neuroscience, 3, 220–230.

    Google Scholar 

  • Flash, T., & Hogan, N. (1985). The coordination of arm movements: An experimentally confirmed mathematical model. Journal of Neuroscience, 7, 1688–1703.

    Google Scholar 

  • Georgopoulos, A. P., & Grillner, S. (1989). Visuomotor coordination in reaching and locomotion. Science, 245, 1209–1210.

    Google Scholar 

  • Guiard, Y. (1993). On Fitts' and Hooke's laws: Simple harmonic movement in upper limb cyclic aiming. Acta Psychologica, 82, 139–159.

    Google Scholar 

  • Hasan, Z. (1991). Biomechanics and the study of multijoint movements. In D. R. Humphrey & H. J. Freund (Eds.), Motor control: Concepts and issues (pp. 75–84). Chichester: John Wiley & Sons.

    Google Scholar 

  • Hogan, N., & Flash, T. (1987). Moving gracefully: quantitative theories of motor coordination. Trends in Neurol Science, 10, 170–174.

    Google Scholar 

  • Hollerbach, J. M. (1981). An oscillation theory of handwriting. Biological Cybernetics, 39, 139–156.

    Google Scholar 

  • Hollerbach, J. M. (1990). Fundamentals of motor behavior. In. D. N. Osherson, S. M. Kosslyn, & J. M. Hollerbach (Eds.), An invitation to cognitive science. Vol. 2: Visual cognition and action (pp. 153–182). Cambridge, MA: MIT Press.

    Google Scholar 

  • Kagan, J. (1971). Change and continuity in infancy. New York: Wiley.

    Google Scholar 

  • Keele, S. W., Cohen, A., & Ivry, R. (1990). Motor programs: Concepts and issues. In M. Jeannerod (Ed.), Attention and performance XIII: Motor representation and control (pp. 77–110). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Keele, S. W., Jennings, P., Jones, S., Caulton, D., & Cohen, A. (1995). On the modularity of sequence representation. Journal of Motor Behavior, 27, 17–30.

    Google Scholar 

  • Kosslyn, S. M. (1980). Image and mind. Harvard: Cambridge University Press.

    Google Scholar 

  • Lacquaniti, F., Terzuolo, C., & Viviani, P. (1983). The law relating kinematic and figural aspects of drawing movements. Acta Psychologica, 54, 115–130.

    Google Scholar 

  • Lashley, K. S. (1942). The problem of cerebral organization in vision. Biological Symposia, 7, 301–322.

    Google Scholar 

  • Merton, P. A. (1972). How we control the contraction of our muscles. Scientific American, 226, (May), 30–37.

    Google Scholar 

  • Meulenbroek, R. G. J., & Van Galen, G. P. (1989). The production of connecting strokes: Developing co-articulation in 8 to 12-year old children. In R. Plamondon, C. Y. Suen, & M. L. Simner (Eds.), Computer recognition and human production of handwriting pp. 273–286). Singapore: World Scientific Press.

    Google Scholar 

  • Meulenbroek, R. G. J., Rosenbaum, D. A., Thomassen, A. J. W. M., & Loukopoulos, L. D. (1994). A model of limb-segment coordination in drawing behaviour. In: C. Faure, P. Keuss, G. Lorette, & A. Vinter (Eds.), Advances in handwriting and drawing: A multidisciplinary approach (pp. 348–362). Paris: Europia.

    Google Scholar 

  • Meulenbroek, R. G. J., Rosenbaum, D. A., Thomassen, A. J. W. M., & Schomaker, L. R. B. (1993). Limb-segment selection in drawing movements. Quarterly Journal of Experimental Psychology, 46A, 273–299.

    Google Scholar 

  • Morasso, P., & Sanguineti, V. (1995). Self-organizing body scheme for motor planning. Journal of Motor Behavior, 27, 52–66.

    Google Scholar 

  • Morasso, P., Mussa-Ivaldi, F. A., & Ruggiero, C. (1983). How a discontinuous mechanism can produce continuous movement in trajectory formation and handwriting. Acta Psychologica, 54, 83–98.

    Google Scholar 

  • Mussa-Ivaldi, F. A., Morasso, P., & Zaccaria, R. (1988). Kinematic networks: A distributed model for representing and regularizing motor redundancy. Biological Cybernetics, 60, 1–16.

    Google Scholar 

  • Pantina, N. S. (1957). Formitovanie dvigatel'nogo navyka pi'ma. Voprosy Psikhologii, 4.

  • Plamondon, R. (1993). Looking at handwriting from a velocity control perspective. Acta Psychologica, 82, 89–101.

    Google Scholar 

  • Raibert, M. H. (1977). Motor control and learning by the statespace model. Technical Report AI-M-351, MIT.

  • Rosenbaum, D. A. (1991). Human motor control. San Diego: Academic Press.

    Google Scholar 

  • Rosenbaum, D. A., Engelbrecht, S. E., Busche, M. M., & Loukopoulos, L. D. (1993). Knowledge model for selecting and producing reaching movements. Journal of Motor Behavior, 25, 217–227.

    Google Scholar 

  • Rosenbaum, D. A., Loukopoulos, L. D., Meulenbroek, R. G. J., Vaughan, J., & Engelbrecht, S. E. (1995). Planning reaches by evaluating stored postures. Psychological Review, 102, 28–67.

    Google Scholar 

  • Schneider, K., Zernicke, R. F., Schmidt, R. A., & Hart, T. J. (1989). Changes in limb dynamics during the practice of rapid arm movements. Journal of Biomechanics, 22, 805–817.

    Google Scholar 

  • Schomaker, L., Thomassen, A. J. W. M., & Van Galen, G. P. (1986). A computational model of cursive handwriting. In. R. Plamondon, C. Y. Suen, & M. L. Simner (Eds.), Computer recognition and human production of handwriting (pp. 153–177). Singapore: World Scientific.

    Google Scholar 

  • Schwartz, A. B. (1994). Direct cortical representation of drawing. Science, 265, 540–542.

    Google Scholar 

  • Shadmehr, R. (1993). Control of equilibrium position and stiffness through postural modules. Journal of Motor Behavior, 25, 228–241.

    Google Scholar 

  • Smyth, M. M. (1984). Memory for movements. In M. M. Smyth & A. M. Wing (Eds.), The psychology of human movement (pp. 83–117). London: Academic Press.

    Google Scholar 

  • Soechting, J. F., & Lacquaniti, F. (1981). Invariant characteristics of a pointing movement in man. Journal of Neuroscience, 1, 710–720.

    Google Scholar 

  • Swinnen, S. (1991). Motor control. In R. Dubelco (Ed.), Encyclopedia of Human Biology, Vol. V. San Diego: Academic Press.

    Google Scholar 

  • Thomassen, A. J. W. M., & Teulings, H. L. (1983). The development of handwriting. In: M. Martlew (Ed.), The psychology of written language: Developmental and educational perspectives (pp. 179–213). New York: Wiley.

    Google Scholar 

  • Van Galen, G. P. (1990). Phonological and motoric demands in handwriting: Evidence for discrete transmission of information. Acta Psychologica, 74, 259–275.

    Google Scholar 

  • Van Galen, G. P., & Teulings, H. L. (1983). The independent monitoring of form and scale factors in handwriting. Acta Psychologica, 54, 9–22.

    Google Scholar 

  • Van Galen, G. P. (1991). Handwriting: Issues for a psychomotor theory. Human Movement Science, 10, 165–191.

    Google Scholar 

  • Vaughan, J., Rosenbaum, D. A., Moore, C., & Diedrich, F. (1996). Cooperative selection of movements: The Optimal Selection model. Psychological Research Psychologische Forschung, 58, 254–273

    Google Scholar 

  • Viviani, P., & Stucchi, N. (1992). Biological movements look uniform: Evidence of motor-perceptual interactions. Journal of Experiment Psychology: Human Perception and Performance, 18, 603–623.

    Google Scholar 

  • Vredenbregt, J., & Koster, W. G. (1971). Analysis and synthesis of handwriting, Philips Technical Review, 32, 73–78.

    Google Scholar 

  • Warm, J. P., & Nimmo-Smith, I. (1990). Evidence against the relative invariance of timing in handwriting. Quarterly Journal of Experimental Psychology, 42A, 105–119.

    Google Scholar 

  • Wright, C. E. (1990). Generalized motor programs: Reexamining claims of effector independence in writing. In M. Jeannerod (Ed.), Attention and performance XIII (pp. 294–320). Hillsdale, NJ, Lawrence Erlbaum.

    Google Scholar 

  • Wright, C. E. (1993). Evaluating the special role of timing in the control of handwriting. Acta Psychologica, 82, 5–52.

    Google Scholar 

  • Wright, C. E., & Lindemann, P. G. (1995). Generalization of motor representations for handwriting: What is learned when learning to write with the non-dominant hand? In M. Simner (Ed.), Proceedings of the Seventh biannial conference of the International Graphonomics Society (pp. 170–171). London, ON: University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. J. Meulenbroek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meulenbroek, R.G.J., Thomassen, A.J.W.K., Rosebaum, D.A. et al. Adaptation of a reaching model to handwriting: How different effectors can produce the same written output, and other results. Psychol. Res 59, 64–74 (1996). https://doi.org/10.1007/BF00419834

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00419834

Keywords

Navigation